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Abstract

The decays of heavy-light mesons are described by form factors which cannot
be calculated from first principles. In this thesis we address the problem of
extracting these form factors from given bound state models. We present a
simple and straightforward method for relating the form factors, as defined
within the covariant trace formalism of the heavy quark effective theory, to
the overlaps of the rest frame wave functions of the light degrees of freedom.
We also advocate an analysis which uses Regge structure, and the Bjorken and
Voloshin sum rules in the heavy quark limit, to restrict the choice of parameters
of a given relativistic quark model. Using this approach we examine several
hadronic models in the heavy quark limit. Within the framework of the heavy
quark effective theory, we also investigate semileptonic and radiative rare B

meson decays.
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Chapter 1

Introduction and History

The standard model [1] provides a very successful description of the physics
currently accessible with particle accelerators. However, in spite of its suc-
cess, many questions remain unanswered. In particular, the flavor sector of
the theory contains a large number of undetermined parameters. These are
the quark masses, as well as the four parameters of the Cabbibo-Kobayashi-
Maskawa (CKM) matrix, which describes the mixing of the mass eigenstates of
the quarks under the weak interactions. Precise determination of these param-
eters depends crucially on an understanding of the connection between quark
and hadronic properties. Unfortunately, the nonperturbative long-distance
forces, responsible for the confinement of quarks into hadrons, belong to the
part of the strong interaction physics which is the least understood.

Indeed, there are very few cases in which it is possible using analytic meth-
ods to make systematic predictions based on quantum chromodynamics (QCD)
in the low-energy, nonperturbative regime. All such predictions are based not
on dynamical calculations, but on symmetries.

A well-known example is chiral symmetry [2], which arises since the current



masses of the light quarks' are small compared to Agcp, the intrinsic mass
scale of the strong interactions. In the limiting case of n; massless quarks,
the QCD Lagrangian has an SUr(ns) x SUg(ny) chiral symmetry. Although
spontaneously broken in nature, the existence of this underlying symmetry
allows the systematic expansion within chiral perturbation theory, in which
many of the low-energy properties of QCD are related to a few reduced matrix
elements.

Over the last few years it has become clear that a similar situation arises
in systems containing a single heavy quark [3]. This symmetry arises because
once a quark becomes sufficiently heavy, its mass and spin become irrelevant to
the nonperturbative dynamics of the light degrees of freedom (LDF) of QCD.?
As an extreme example, consider two very heavy quarks of masses one and ten
kilograms. Even though these quarks are surrounded by the “brown muck” of
the LDF, they will hardly notice it, and their motion will fluctuate only slightly
about that of a free heavy quark. Given that such quarks can define with great
precision their own center-of-mass, they act as a static source of color localized
at the origin. QCD field equations in the neighborhood of such an isolated
heavy quark are therefore those of the LDF, subject to the boundary condition
that there is a static triplet source of color-electric field at the origin. Since this
boundary condition is the same for both of our hypothetical heavy quarks, the
solutions for the configuration of the LDF in their presence will be the same,

even though the heavy quark masses are different. Furthermore, since the

!The quarks of the standard model fall naturally into two classes: u, d, and s are light
quarks, whereas ¢, b and ¢t quarks are heavy.

2By the light degrees of freedom we mean the light quarks and antiquarks, and the gluons.



spin of the heavy quark decouples from the spin of the LDF as 1/my, it also
becomes irrelevant for the configuration of the LDF in the limit where the
heavy quark mass goes to infinity. Therefore, hadronic systems containing a
single heavy quark admit an additional symmetry which is not present in the
full QCD Lagrangian, the heavy quark symmetry (HQS). For N, heavy quarks
the static HQS is actually an SU(2N,) spin-flavor symmetry, since both the
spin and the flavor of the heavy quark are irrelevant.

In much the same way as the chiral symmetry of light quarks, HQS also
endows us with predictive power. The most important predictions are for
semileptonic B meson decay form factors, which are expected to play an im-
portant role in the accurate determination of the CKM matrix elements V/,
and V,;, from the experimental data.

Nevertheless, the discovery of HQS has not eliminated the need for models.
It has rather provided a solid foundation for model building, and also redefined
the role models should play. Among other things, they should complement
HQS by providing predictions for the various universal form factors. Because
of that, it is important to have reliable hadronic models in the heavy quark
limit. One of the goals of this thesis is an attempt to provide some insight
into that subject.

While the present burst of interest in the field stems from the work of Isgur
and Wise [3], the main ingredients of their work had been in the literature for
some time. Even before the discovery of the charm quark, De Rujula, Georgi

and Glashow considered a model that incorporated the observation that the



spin of the heavy quark decouples in the heavy-light system [4]. They esti-
mated the mass difference of D and D* mesons to be of the order of the pion
mass, which turned out to be about right. The concept of a new flavor symme-
try for hadrons containing a heavy quark was introduced as early as 1980 by
Shuryak [5], who later studied many properties of heavy mesons and baryons
in the context of QCD sum rules [6]. The infinite quark mass limit in QCD was
used by FEichten and Feinberg to study the heavy quark-antiquark potential
[7]. Almost ten years later, Eichten [8], and Lepage and Thacker [9], sug-
gested applying the same techniques to heavy-light systems, thus opening the
way towards an effective theory with explicit spin symmetries. Motivated by
experimental progress in the measurement of semileptonic decays of B mesons,
several theoretical calculations of the rates for these decays appeared in the
mid 1980s [10-17]. In [13] and [14] it was also pointed out that matrix ele-
ment for B — Dev, was most reliably calculated at the kinematic point where
the D meson does not recoil in the rest frame of the B meson. Furthermore,
Nussinov and Wetzel gave a physical explanation which was close in spirit to
the modern argument of HQS that the state of the LDF in heavy-light meson
is independent of the mass of the heavy quark [14] . The work of Voloshin and
Shifman [18] was also important to the formulation of HQS. They proposed a
theoretical limit m, — m;, (now called the Shifman-Voloshin limit), in which
the matrix element for B — Dev, is exactly calculable. The last element used
by Isgur and Wise comes from the work of Voloshin and Shifman [19], and of
Politzer and Wise [20], who extracted violations to the flavor symmetry pre-

dictions in the form of logarithms of the ratio of heavy quark masses. These



arise from the short-distance physics related to hard gluons probing the quan-
tum numbers (i.e., spin, flavor, and velocity) of heavy quarks. Politzer and
Wise later attempted to reproduce these calculations working directly within
the context of an effective theory [21].

Even though there is no doubt that HQS is a large step forward in our
understanding of QCD, it is also certainly true that there is only so much one
can learn from the symmetry arguments. The most obvious examples are the
unknown form factors for semileptonic B meson decays. In order to calculate
them, one still has to rely on some model of strong interactions. It is therefore
important to have a formalism, consistent with HQS and its effective theory
(HQET), which can be used to extract these form factors from a given model.
The aim of this thesis is to make progress towards accomplishing this task.

By using the Bjorken [22,23] and the Voloshin [24] sum rules, we also
present an attempt to shed some light onto description of meson dynamics
in terms of the bound state models. The purpose here is not to say whether
a particular model of quark confinement is right or wrong, but instead to
establish whether or not it is self-consistent in the heavy quark limit.

The remainder of the thesis is organized as follows: Chapter 2 presents an
overview of HQS and HQET. There is a vast literature on this subject and
many excellent reviews already exist [25-28]. The purpose of this chapter is
to introduce the basic ideas and formalism which will be used in subsequent
chapters. The heart of the thesis is Chapter 3 where the formalism for ex-
tracting form factors from a given bound state model is developed. Several

models in the heavy quark limit are described, and their self-consistency in



terms of the sum rules of HQET is investigated in Chapter 4. These models
are used for the analysis of semileptonic B meson decays in Chapter 5, as the
most important application of HQET, together with the formalism developed
in Chapter 3. As another example, radiative rare B meson decays are exam-
ined in Chapter 6. Our conclusions are summarized in Chapter 7. Appendix
A contains a brief description of the numerical methods used to deal with the

different bound state models considered in this thesis.



Chapter 2

Heavy Quark Symmetry

2.1 Introduction

The existence of heavy quark symmetry (HQS) in hadrons composed of one
heavy quark and any number of light quarks is by now a well-established
fact. In the rest frame of the heavy hadron, the heavy quark is practically
at rest. It effectively acts as a static source of color localized at the origin,
and therefore its mass doesn’t matter as far as the light degrees of freedom
(LDF) are concerned. Furthermore, since the spin-spin interaction involves an
explicit factor of g;/mg, where g; is the strong coupling constant, the spin of
the heavy quark decouples in the limit mg — oo. Therefore, the properties
of heavy hadrons are independent of the spin and mass of the heavy source of
color. This is the basic idea of HQS. The heavy quark effective theory (HQET)
is nothing more than a method for giving these observations a formal basis.
There are many excellent reviews on HQS and HQET [25-28], and this
chapter is not intended to be yet another one. Instead, its purpose is to
introduce the basic ideas and methods of HQET which are necessary for un-

derstanding of the rest of this thesis. Because of that, many important topics



in HQET will not be covered here, and some of them, such as renormalization,
will be only briefly described, without going through the actual calculations

in detail.

2.2 The Effective Lagrangian and Its Symme-
tries

In a physical situation where a heavy quark @ is interacting with the light
degrees of freedom (LDF) carrying four-momenta much smaller than the heavy
quark mass mg, it is appropriate to go over to an effective theory, in which
mg — oo with its four-velocity v# fixed. For a heavy quark field we can then
write [29]

Q = eimevep(Q) (2.1)
The field A{?) is constrained to satisfy*

phl@ = p@ (2.2)

It destroys a heavy quark of four-velocity v#, but it does not create an anti-
quark, since in the effective theory pair creation is not present, and the field
for the antiquark is an independent degree of freedom. Putting (2.1) into the

part of the QCD Lagrangian density involving the heavy quark field @,

L=QiP-me)Q . (2.3)
and using the constraint (2.2), we find

£l = plQiph@ (2.4)

L As usual, the slash indicates contraction with y*.



Since 1(14 #)h{? = h{@, this can be further simplified to
£ = @iy . DA (2.5)

In the above D" is the covariant derivative, D* = 0* — ig /T, A" where A#
are the gluon fields, and T, are the generators of color SU(3), normalized to
Te(T,T3) = %(5@. Note that a derivative acting on hS,Q) produces a factor of
the residual momentum k*, because the large part (mgu*) of heavy quark
momentum (pj, = mqu* + k*), was scaled out of the field.

Since there are no Dirac matrices in the effective Lagrangian (2.5), inter-
actions of the heavy quark with gluons leave its spin unchanged. Associated
with this is an SU(2) symmetry group under which £¢// is invariant. In the
rest frame of the heavy quark we can choose the generators S of this group

where the y-matrices in the standard representation are given by

7 = , 7 = , = @)

o = , 0 = , 07 = . (28)

In a general frame, we first define a set of three orthonormal polarization
vectors &', such that ¢’ -v = 0, and then take the generators of the spin SU(2)

group to be
) 1 .
St = 575 yg. (2.9)
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Defined in this way, the generators S* satisfy SU(2) commutation relations,
[S*,57] = i€k Sk (2.10)

and also commute with £, i.e., [£,S = 0. It can be easily shown that an

infinitesimal SU(2) transformation,
@D — (1 +ie- S)HY | (2.11)

leaves £¢// invariant, and also preserves the on-shell condition (2.2) for A{®).
In the effective Lagrangian the mass of the heavy quark does not appear.

For Nj, heavy quarks moving with the same velocity v* (2.5) becomes

Ny
£ =5 h@iy - DR | (2.12)
i=1

which is clearly invariant under rotations in flavor space. Therefore, in such
a situation an SU(2) spin symmetry becomes an SU(2Ny) heavy quark spin-
flavor symmetry [3].

From (2.5) it is straightforward to obtain Feynman rules. In particular,

the heavy quark propagator in the effective theory becomes

2.13
vk’ (2.13)
while the vertex for gluon-heavy quark interactions takes the form

igsTv* . (2.14)

These can also be obtained from the corresponding Feynman rules in the full
theory of QCD, by using p’é = mgv* + k*, and the property Yug = ug of the

on-shell heavy quark spinors.
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2.3 Spectroscopic Implications

The most direct consequences of the HQS concern the spectroscopy of states
containing one heavy quark [30]. In the mg — oo limit the total angular
momentum j of the LDF decouples from the spin of the heavy quark, and
both are separately conserved by the strong interaction. Therefore, j is a good
quantum number, so that states can be labeled as JJP . The spin symmetry
predicts that for each j there are two degenerate heavy-light states with total
angular momentum J = j £ % (unless j = 0, in which case a single J = 1/2
state is obtained). The flavor symmetry ensures that the spectrum is identical
for each heavy quark @ up to an overall constant mass shift associated with
the heavy quark mass.

As an example, consider ground-state mesons containing a heavy quark.
There, the LDF have the quantum numbers of a light antiquark, and the
degenerate states are pseudoscalar (J;” = 0y ,), and vector (J = 17 ,) mesons.

In the charm and bottom systems we have [31]

mp« —mp =~ 141 MeV

mp: —mp, ~ 141 MeV
(2.15)

mps —mp ~ 46 MeV ,

mp: —mp, ~ 46 MeV .
Even though these mass splitting are reasonably small, one can make even
more accurate predictions. At order 1/mg one expects hyperfine corrections
to resolve the degeneracy, e.g. mp« — mp o 1/m,. This leads to stronger

2 2 2

statements m%. — m% ~ m?%. — m?% & const., and similarly for the strange

mesons my. —my ~ mh. —m3j, = const. These two constants can in principle
8 8
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be different, since the flavor quantum numbers of the light degrees of freedom
are different for the strange and non-strange states. However, from experiment

we know that [31]

Q

m2. — m> 0.55 GeV? |
e (2.16)
m%. —m% 0.49 GeV? |

Q

and also
mp. —mp, = 0.58 GeV?, 2.17)
mp. —myp, ~ 0.51 GeV?,
which indicates that to first approximation hyperfine corrections are indepen-
dent of the flavor of the LDF.
Excited meson states (i.e., those in which the LDF carry orbital angular
momentum) can also be studied using HQS. For example, if one interprets
D,(2420) and D3(2460) as members of the j = 3/2 P-wave doublet (1?:/2, 23+/2),

one then expects
mps — my, & mp. —mp, ~0.17 GeV? . (2.18)

This splitting is much smaller than corresponding ones for the S-wave mesons.
The reason is that wave function of the LDF in a P-wave state vanishes at the
origin, so that hyperfine corrections are strongly suppressed.

Another typical prediction of the flavor symmetry is that spectra built
on different heavy quarks are identical up to an overall constant mass shift
associated with the heavy quark mass. Thus, we expect relations such as

mp, —Mp & Mp, —Mp, Or Mp, —Mp ~ Mp, —mp, to hold. Indeed, the first
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relation is nicely confirmed by experiment which gives [31]

mp, —mp ~ 99 MeV ,
(2.19)

mp, —mp =~ 96 MeV .
Since the heavy quark flavor symmetry applies not only to mass splittings,
but also to all other properties of hadrons containing a single heavy quark, it
has many more applications to the strong interactions of those hadrons. For

instance, one can find relations between the decay amplitudes describing the

emission of light quanta such as 7, p, or 7w, from a heavy hadron [30].

2.4 Transition Matrix Elements and Covari-
ant Trace Formalism

In this section we consider matrix elements of operators in HQET. For the
sake of clarity, we focus on the well-known example of the semileptonic decays
of a B meson to D or D* mesons. These decays play an important role in
determining the CKM matrix element V.

In order to extract this angle from experiment, the theory has to provide
the six unknown form factors for B — D and B — D* transitions. The

standard definition of these form factors is
(DP)V*B(p) = f(@®)p+)+f-(@)p-p), (220)
(D*(p',€)|A"|B(p)) = f(a")e"™ + as(q*)(e™ p)(p+ )"
+ a ()" p)p - 1), (2:21)

(D*(p', " IV*|B(p)) = ig(d®)e" Perlp+p)alp—1)s,  (2.22)
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where V# = éy#b and A* = éy*+°b are the vector and the axial-vector currents,
respectively, and ¢> = (p — p')? is momentum transfer. Meson states in the

above expressions have the conventional relativistic normalization,

(M@, €| M(p.e)) = 20°.6® (p — p') . (2.23)

Several methods of estimating the above form factors can be found in the
literature. A frequently used method consists of estimating the form factor
at one value of momentum transfer ¢> = ¢2 (e.g., using the nonrelativistic
constituent quark model), and then introducing the functional dependence on
¢? in some reasonable, but completely arbitrary way.

However, HQET gives the form factor at the maximum momentum trans-
fer, ¢* = ¢2,,, = (mp —mp)?, the point at which the resulting D or D* meson
does not recoil in the rest frame of the decaying B meson. Furthermore, even
though the functional dependence of form factors on ¢? is a nonperturbative
problem, in the heavy quark limit not all of the form factors in (2.20)-(2.22)
are independent. In fact, one of the most important applications of HQET
is providing relations between different form factors which describe decays of
heavy-light mesons. For B — D and B — D* transitions these relations have
been first derived by Isgur and Wise [3]. Nevertheless, the covariant trace
formalism (CTF), formulated in [16,32,33] and generalized to excited states
in [34], is the most convenient method for extracting the consequences of the
spin and flavor symmetries of HQET, i.e., for keeping track of the relevant
Clebsch-Gordan (CG) coefficients.

For heavy quark systems it is a more natural to use meson velocity instead

of momentum. Instead of (2.23), meson states in HQET are normalized to
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200 = 2p°/myy, ie.,
(M(v',e")|M(v,e)) = 20°6,.6®) (v — v') . (2.24)

In the mg — oo limit, the states |M(v,€)) are completely characterized by

the configuration of the LDF. The wave function for these states is defined as
M (v,¢) o< 0|h{?q| M (v,¢)) . (2.25)

Now, let us denote wave functions for pseudoscalar and vector states as
C(v) and C*(v,¢), respectively.? For these mesons (2.25) will be a product
of the form ugv;, where ug is a heavy quark spinor satisfying pug = ug,
and v; = vg’yo is an anti-spinor representing the LDF with j = 1/2. Such a
product is a superposition of states with J = 0 and J = 1. The easiest way to
identify C(v) and C*(v, €), is to form appropriate combinations of the spin-up
and spin-down spinors in the rest frame, where v# = (1,0). The result can
then be generalized to arbitrary v* by boosting.

In the standard (Dirac) representation, the spinor basis u((ll) x 01, and

(2

a) X 0o, corresponds to spin up and spin down, while the anti-spinor basis

U
v&l) X —03, and Ug) X 44 corresponds to spin down and spin up. In order to

have meson states normalized according to (2.24), we normalize heavy quark

spinors to 2, i.e., ESI)US) = 20,4, and for anti-spinors describing the LDF we

(s"), (s)

use Uy ‘v = —0sy. With these definitions we can use ordinary CG coefficients

to form the desired states. The pseudoscalar state in the rest frame is given

2M (v, €) will be used for a generic heavy-light meson matrix wave function.
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by
1 _ 2) (2 01 1+4°
Similarly, the three vector states are
(B @ —1| 0 ot i 1+9°
C (8 ) =Up'Vg = % = 9 521 ) (227)
0 0
. 1 B ) 0 o3 14 79
C* () = %(ug)vél) +u o)) = - = O, (228
oy @ _ L [0 it ) 140
C*(e"7) =ug'vg’ = 7 = AN (2.29)
0 0
Here, polarization vectors are the usual ones,
1
e® = :Fﬁ(o, 1,4+i,0) , (2.30)
@ = (0,0,0,1) . (2.31)

Using S = £7°7°y, and S(uv) = [S, uv], one can check that (2.26) has spin
zero, while (2.27), (2.28), and (2.29), have spin one, with third component 1,
0, and —1, respectively. It is straightforward to generalize the above results

to arbitrary velocity. Replacing 7°v® — 4, we find

Cv) = #75, (2.32)
C*(v,e) = # : (2.33)

As expected, pC(v) = C(v) and pC*(v,e) = C*(v,e). By construction, the
spin symmetry acts on this representation only on the first index of matrices

C(v) and C*(v, ¢).
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Consider now the matrix elements of heavy quark currents which are rele-
vant for the semileptonic B —+ D and B — D* decays. The heavy quark spin
indices must be contracted in order to ensure SU(2) invariance, and we must
form a trace over the remaining Dirac indices, together with all possible terms
constructed of g, p', etc. It turns out that f; + fo #' + f3 p, where f; are
the Lorentz scalar functions of w = v - v/, is the most general form consistent
with Lorentz covariance and parity conservation of the strong interactions.

Therefore, we have
(DW)[BTAP |Bw)) = Tr [CONTCO)(fi+ fo '+ F5 #)] » (234)
(D*(v', )[BT B(v)) = Tx [C* (v, TC()(fi + fo ¥+ f5 #)] . (2.35)

where M = 7v°M'°. One might think that f;’s are all independent functions,
but since ¥ M (v,e) = M(v,¢), it is straightforward to see that the combination
¢c = f1 — fo — f3 in the trace has the same effect as f; + fo 4’ + f3 #. Hence,

(2.34) and (2.35) become
(DW)APTAP|B)) = Tr[C()ICW)]éew) (2.36)
(D*(v, &) BYThP|Bv)) = Tr[C*(,e)IC)] éclw) . (2.37)

As one can see, the six form factors in (2.20)-(2.22), which parametrize semilep-
tonic B — D and B — D* decays, are in the heavy quark limit reduced to a
single universal function {-(w). This is the famous Isgur-Wise (IW) function
(3]

The flavor symmetry also implies that the form factor for the matrix ele-

ment of the B-current between B meson states, is given by the same reduced
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matrix element as (2.36), i.e.,
(B()[hSTh{)| B(v)) = Tr [C()IC(v)] &o(w) - (2.38)

Using ' = 9°, and recalling that B number is conserved, one finds that &¢ is

fixed at v' = v. Normalization of states (2.24) then gives
c(l)=1. (2.39)

The IW function is truly universal, since it doesn’t depend on the heavy quark’s
mass or spin, nor does it depend on the current which causes the @; — @,
transition. It is remarkable that - describes both timelike form factors (as
in B — DIly;) and spacelike form factors (as in B — B). Of course, in both
cases it actually describes transitions between infinitely heavy sources at fixed
velocity transfer (v — v')%.

Using properties of spin-(n+1/2) Rarita-Schwinger tensor spinors [35], one
can find covariant representations, analogous to (2.32) and (2.33), for heavy-
light states with non-zero orbital angular momentum [34]. The eight lowest
lying states form four doublets, and we denote them as follows: (C, C*) is
the L = 0 doublet, (F, E*) and (F, F*) are the two L = 1 doublets, and
(G, G*) is the L = 2 doublet. Spin zero states are characterized only by their
four-velocity v#. In addition to v*, spin one states are characterized with a
polarization vector # (satisfying e-v = 0), while spin two objects are described

with a symmetric tensor e*” (" = &"* , e"v, =0, ", = 0). For the future
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reference we summarize now the expressions for these states [34]:

Clv) = 3(4+1)s, JP =07,
C*(v,e) = 3(F+1) ¢, I =11,
Ew) = 3(4+1), JP =00,
E*(v,e) = 5(A+1)% £, =10, (2.40)
F(v,e) = L2+l =3 £y —vm)], JP=13,,
F*(v,e) = (6 + 1y, IP =24,
Gv,e) = H/3(F+D)er =5 (" +om)], P =13,,
G*(v,e) = 3(# +1D)yme™, I =25, .

Matrix elements of a heavy quark current between the physical meson states

are calculated by taking the trace (w = v - '),
(M' (o', ) BDTHD | M(v, ) = Te[M' (v, ) TM(v,e)]IMy(w) ,  (2.41)

where M’ and M denote appropriate matrices from (2.40), and M = 72 M0,
In order to restore to the standard normalization of states, the trace in (2.41)
has to be multiplied by /mamar. The unknown function M;(w) represents
the LDF. For the transitions of a 019 ground state into an excited state it is

defined as [34]

[ cew), o (C oY),
My(w) = 4 W), O~ (BE), (2.42)
ér(w)v, , C— (F,F*),
\ ¢c(wv, , C— (G,GY)

The vector index in the last two definitions will be contracted with the one in

the representations of j = 3/2 excited states in (2.40). Let us also mention that
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heavy-light baryon states, which correspond to integral j, were also studied in

[34]. However, those states will not be considered here.

2.5 Sum Rules

The TW function &c(w), or the elastic form factor, plays a central role in
the description of the weak decays B — D and B — D*. It contains the
long distance physics associated with the strong interactions of the LDF, and
cannot be calculated from first principles. Nevertheless, some of its properties
can be deduced on general grounds. As we have already seen in (2.39), one
such property is its normalization at w = 1. Also of a particular interest is
behavior of the IW function close to w = 1, since a reliable extrapolation of
experimental data to zero recoil point can be used for measuring V,; [36]. Near

zero recoil, behavior of £¢(w) is determined by its slope & (1), i.e.,
fow) 21+ (1) (w—-1)+0[(w—-1)%. (2.43)

Since the kinematic region accessible in semileptonic B — D and B — D*
decays is small (1 < w < 1.6), a precise knowledge of the slope parameter
would basically determine the IW function in the physical region.

Bjorken has shown [22,23] that a sum rule relates £,(1) to the zero recoil
inelastic form factors £z (1) and r(1), which describe transitions C' — (F, E*)
and C — (F, F*), respectively. Consider the quantity®

h¥e(w) = S (B)[BOTHD | X, (v, e)) (X (v, ) [ BITHD | BY . (2.44)

&-I

3Here we ignore renormalization subtleties.
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If one sums over final states X., then it seems reasonable that this inclusive
quantity can be calculated as a heavy quark transition. In other words, using

Yx, [ Xe)(Xe| =1, and ¥, ug)(v)ﬂg)(v) =9 + 1, one finds

STe (4 + DE(# + 1] = D) (2.45)

On the other hand, the contribution of any charmed state to the right-hand
side of (2.45) can be be evaluated by (2.41). The sum over X, polarizations

can be performed using standard expressions. For spin one states we have

Zs’* v = =Y + U0, , (2.46)

while for spin two states we use

1 1
Z guugaﬂ = _g(guv - U;Iﬂ)zl/) (9ap — Ulavlﬂ) + §(gua - va;)(ng - UII/U,IB)
1 ! 1 ! !
20— ) (0 — 210 (2.47

Including all charm states with ;7 = 1/27,1/2%, and 3/2% (i.e., all S and

P-waves), and using (2.40)-(2.42), (2.45) becomes*

= )Y

(w1 Z\g W)+ (w+1)22\5§3)(w)|2 F... . (2.48)

In the above n, 7, and j label the radial excitations of states with the same

quantum numbers. We adopt convention that 58 ) = &c, the IW function for

4Since (2.45) does not depend on the choice of T, the simplest way to prove (2.48) is to
choose T' = 1, in which case the matrix elements (2.41) are zero for C — C*, C — E, and
for C — F™* transitions.
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semileptonic B — D, D* transitions. The ellipsis denote contributions from
systems with quantum numbers for the LDF other than j© = 1/27,1/2%, and
3/2%. Also, the sums in (2.48) are understood in a generalized sense as sums
over discrete states and integrals over continuum states. Since the radially
excited S-waves are orthogonal to the ground state B meson, the form factors
f(cn ), where n > 1, all vanish as w — 1. Therefore, the number of states
contributing in (2.48) can be drastically reduced by expanding in a power
series about w = 1. Using (2.43), and keeping terms up to linear order in
(w—1), (2.48) gives &c(1) = 1, and also the Bjorken sum rule relating the

slope £(1) to the inelastic form factors at zero recoil,

(1) =7+ Z\s D +: el (2.49)

This sum rule provides the well-known upper bound on (1),

, 1
—&c(l) 2 7 - (2.50)

Similar considerations lead to another, less well-known sum rule, which also
involves the inelastic form factors, first derived by Voloshin [24]. The Voloshin
sum rule is the analog of the “optical” sum rule for the dipole scattering of

light in atomic physics. It can be written in the form
2 2 EY , 2
———Z ——1 ) |69 (1)) +3 (D) o =a.  (251)
j (&
In the above expression Eg) and E}j) denote energies of the LDF in the i-th
excited state with quantum numbers of the (E, E*) doublet, and j-th excited
state with quantum numbers of the (F, F*) doublet, respectively. E¢ is the

LDF energy in the lowest (C,C*) doublet (corresponding to (D, D*) mesons
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in semileptonic B decays). Note that the energy of the LDF in any heavy-light
state is defined as the state mass minus the heavy quark mass.

Clearly, contributions of all P-wave states (including continuum) to the
right-hand sides of (2.49) and (2.51) are positive, and therefore the total con-
tributions of meson states only, should be smaller than —&; (1) and 1/2 for
the Bjorken and Voloshin sum rules, respectively. This argument will be later

used for constraining parameters of bound state models.

2.6 Renormalization

The effective Lagrangian (2.5) was constructed in such a way that Green func-
tions calculated from it agreed, at tree level and to leading order in heavy
quark mass, with corresponding Green functions in QCD. In other words, the
effective theory correctly reproduces the long-distance (low-energy) physics
of the full theory. Since the heavy quark participates in strong interactions
through its coupling with gluons, whose virtual momenta can be large (of the
order of the heavy quark mass), the effective theory and the full theory will
differ at short distances (high energies). However, the short-distance effects
can be calculated within perturbation theory.

In order to clarify the above statements, consider matrix elements of the
vector current V;’f = Qﬂ“Qi. In QCD this current is conserved, and doesn’t
need renormalization [37]. Its matrix elements are free of ultraviolet diver-
gences, but can have logarithmic dependence on mg, and mg,, coming from

the exchange of hard gluons with virtual momenta comparable to the heavy
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quark masses. In the effective theory where heavy quark masses go to infin-
ity, these logarithms diverge. Therefore, the vector current in the effective
theory does require renormalization [20,21]. Its matrix elements depend on
an arbitrary renormalization scale p, which separates the regions of short and
long-distance physics. If p is chosen such that Agep < p < mg; < mg,,
the effective coupling constant «; in the region between ;. and my, is small,
and perturbation theory can be used for calculation of the short-distance cor-
rections. These corrections have to be added to matrix elements of the ef-
fective theory, which contain only the long-distance physics below the scale
1. Schematically, the relation between matrix elements in the full and in the

effective theory is given by
(Vidaep = Cii(u){Vji (1) noer + O(1/mq) + O(as) - (2.52)

The short-distance, or Wilson coefficients Cj;(u) are defined by this relation,
and are calculated order by order in perturbation theory from comparison of
the matrix elements in both theories. This procedure is called “matching”,
and is independent on any long-distance physics. It is only at high energies
where the two theories differ, and these differences are corrected by Wilson
coefficients.

Calculation of these coefficients in perturbation theory uses renormaliza-
tion group methods. It is in principle straightforward, but in practice rather
tedious. We shall not discuss these calculations in details because of their com-

plexity. Instead, we quote the result [32,38] for the case of the vector current



25

V# = ¢y*b, where

_ as(mp) —6/25 as(m,) 8[wr(w)—1]/27
CCb(’u) lOds(m’C)] [ Ozs(,u) ] ) (2.53)

with
Chb Sl (2.54)

w?—1
An identical expression is also obtained in the case of the axial-vector current
AF = EyFyPh.
The above result can be combined with those of Section 2.4 to give hadronic
matrix elements relevant for the semileptonic B — D and B — D* decays.

Using (2.36) and (2.37) gives
(D(W)|ey"b|B(v)) = vmpmpCabo(w)(v + )" (2.55)
(D*(v',€")[ey"y°0| B(v)) = v/mpmp-Capbo(w)[(1 + w)e"™ — (e™v)v'™] , (2.56)
(D*(v,€)[ey"b|B(v)) = v/mpmp-Cabe(w)ie e v,vp - (2.57)

The scale dependence of £- must cancel that of the Wilson coefficient C.,. At

zero recoil we still have - (1) = 1.

2.7 Power Corrections

The ultimate utility of the ideas presented so far will depend largely on the size
of Agep/mg corrections. We end this brief review of HQS and corresponding
effective theory by briefly describing the physical effects of these corrections.

Since the heavy quark is not precisely on shell as it propagates, it is ap-

propriate to introduce “large” and “small” component fields A(®) and H{?
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by
; 1
hS]Q) — ezva.z§(1+ ﬂ)Q, (258)
; 1
H® = €™t (1= 4)Q - (2.59)

These fields satisfy 4 h{@ = h{@ and g H{? = —H{?). In the rest frame of
the heavy quark h{?) corresponds to the upper two components of @, while

H(? corresponds to the lower two. Instead of (2.1) we then have
Q = e ™ [p{@ 4 g@)] | (2.60)

In terms of the new fields, the QCD Lagrangian for heavy quarks given in

(2.3) becomes
£ = K. DhQ — AD(iv- D+ 2mg) HO
+ R@ip, H? + HYip, h@ (2.61)
where DV = 0 — ig,T, A¥ is covariant derivative, and
D, = D" — (v-D)v" . (2.62)

On a classical level, the heavy degrees of freedom H(?) can be eliminated using

the equations of motion. Putting (2.60) into (i) — mg)Q = 0 yields
iPhD + (i — 2mo)H@ =0 . (2.63)
Multiplying this by $(1+ #) we obtain the two equations,
—iv-Dh@ = ip H@ (2.64)

v

(iv-D+2mo)H@ = ip AP (2.65)
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and the second one implies

1

H@ —
Y v+ D+ 2mg — ie

i R (2.66)

This shows that the small component field H(?) is indeed of order 1/my.
Expression for H{?®) can now be inserted in (2.64) to obtain the equation of
motion for A{@. Tt is not hard to see that (2.66) follows from the effective
Lagrangian

1

Leff = p(@y . DRQ) h(Q)
Y v ot P1; w - D+ 2mg

umhg@ , (2.67)

which is generalization of (2.5) for a large but finite heavy quark mass.
The second term in (2.67) can be expanded in powers of iD/mg. Taking

into account that #h{®) = h{®) and using the identity

1 1 1 1
i ﬁleL 2/ 7 _1t7 (iD1)? + Loy L : (2.68)
2 2 2 2
where 0®% = [y* 4f] and G* is the gluon field strength tensor,
[iD* iD"] = ig,G* = ig,T,G* | (2.69)

we find the effective Lagrangian at order Agep/mg [39,40]. Explicitly,

£ = @iy DR +2—h '(iD1)*h{?

v

mq
9s 7@ aBp(Q 2
+ 4mth )o,8G*h{?) + O(1/mf)) . (2.70)

The leading term coincides with (2.5). The new operators arising at order

1/mg can be identified in the rest frame of the heavy quark, where

1 1

in = —h96ED )P - ——p@(D)*A@ 2.71
Ok Smg ™ (iDy) — 2mg (D) ) (2.711)
Omag = ~LhQ0,5GPh@ — — L [Qg. B . (272)

4mQ mQ
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In the above, the spin operator is S = 1v°7%y* as before, and B! = — 1€k Gi*
are components of the color-magnetic gluon field. Oy;, is just the gauge co-
variant extension of the kinetic energy which arises from the off-shell residual
motion of the heavy quark. O, is the chromo-magnetic “hyperfine” interac-
tion, which is a relativistic effect, and vanishes as mg — oco. This is the origin
of the heavy quark spin symmetry. Both Oy, and O,y should be treated as

perturbations in the computation of S-matrix elements.

2.8 Conclusion

With this brief illustration of the physical effects which arise because heavy
quark masses are not infinite, we completed our short overview of heavy quark
symmetry and heavy quark effective theory. This is certainly a vast subject
and a very active area of research, where new papers appear almost every day.
Because of that, it is impossible to fully cover (or even just touch upon) all
of its parts in only a few pages. We do hope though that this chapter served
its purpose of describing the basic ideas and techniques, which will be used in

subsequent parts of this thesis.
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Chapter 3

Modelling Form Factors

3.1 Introduction

As we have seen in Chapter 2, in the heavy quark limit the various form factors
which parametrize semileptonic B decays, can be expressed in terms of a single
unknown function. Nevertheless, the remaining universal function cannot be
calculated from the first principles. In order to estimate it, one still has to rely
on some model of strong interactions. In general, the unknown IW function
for a particular decay will be related to the overlap of the wave functions
of the LDF in mesons before and after the decay. However, one has to be
careful in identifying the form factor directly with the overlap. Depending
on the definition of a particular form factor, there may be a kinematic factor
involved. If this factor is not taken into account, significantly incorrect results
can be obtained, no matter which model for wave functions of the LDF one
uses.

In [41] Zalewski observed that the heavy quark limit implies a simple for-
mula for the wave function of any particle containing one heavy quark. Based

on this, in this chapter we develop a straightforward method [42] for relating



30

the form factors, as defined within the framework of the CTF [16,32-34], to
overlaps of the rest frame wave functions of the LDF before and after the de-
cay. Even though we are interested here only in mesons, it is obvious that an

analogous calculation can also be done for baryons.

3.2 Defining IW Functions

As pointed out in [41], the assumption of the heavy quark limit implies a
simple formula for the wave function of any particle containing one very heavy
quark (with total angular momentum J and its projection A),
TR0 = 3 (.41 5 Al TR, (s () (31)
AjAQ
In this formula n refers to radial and all other quantum numbers of the meson,
Uy, (v) is the free Dirac bispinor describing a heavy quark with spin <, helicity
Ag, and velocity v (and normalized to uu = 2). @57\3 (v) is the wave function of
the LDF in a meson moving with a velocity v (normalized to one), with total
angular momentum j (in the rest frame of the particle), and its projection ;.
For a meson, this is the wave function of the light antiquark.
From (3.1) it can be immediately seen that matrix elements of the heavy

quark currents Q'T'Q), are linear combinations of matrix elements

(@ (V)@ (0)) iy, (V') Tirg (v) - (3-2)

For a given I, @'T'u is a product of known matrices, and therefore all the
unknown dynamics is contained in the overlaps of the LDF wave functions

(®'|®). We choose the spin projection axis (z) as the velocity direction of
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meson M' as seen in the rest frame of meson M. From the independence of

the overlap on the direction of the z-axis we then have
(@9,,\3|<I>j)\j) =0, if /\;- #\j . (3.3)

Similarly, from the independence of the overlap on the orientation of the y
axis,
<‘I’91,\;\‘I’jAj> = 7777'(—1)]"_]'@;’/,4;\‘I’j,—Aj> : (3.4)
where 7 and 71’ are the orbital parities of the initial and final state of the LDF.
In the case of interest to us, for the change of the orbital angular momentum
from L to L', n = (—=1)¥*. Equations (3.3) and (3.4) have been first
discussed by Politzer [43].
In order to show how one can relate universal functions, defined within the
CTF, to the overlaps of the LDF wave functions, we choose the 01’/2 — (]EL/2
transitions, and axial-vector current (I' = «#+°), as an illustrative example.

From (3.1) we have
O uy] (3.5)

where + and — refer to OIL/Q and 01_/2 states, respectively. Also, from (3.3) and

(3.4) one can see that

(@7, ()24 (v) = —(@7) () @) (v) (3.6)

1
29

and all other overlaps are zero. Therefore, it immediately follows that

(07,(")|QTQ07(v)) = %[u'%ru_% — @ T )@ (0)|25 ) (0) . (3.7)

N= =
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Now, choosing I' = 7*y° and evaluating (3.7) in the rest frame of 0, /o meson,

where v* = (1,0,0,0) and v* = (w,0,0,vw? — 1), one obtains
(01,(0)|@7*7°QI0,,(v)) = —V2Vw + L@ (W)@ 1) . (38)

On the other hand, using (2.41) and (2.42), together with matrix wave func-
tions C(v) and E(v') given in (2.40), one finds

(055 (0)|QY"7°QI075(v)) = (—v" + v")ép(w) | (3.9)

which specialized to the rest frame of 01’/2 state yields

(012() Q7’7 Q|07)(v)) = Vw? — 1€p(w) - (3.10)

Comparing (3.8) and (3.10) we obtain (apart from the irrelevant overall sign)

() = | (@) (0) (3.11)

w—1" 22 3

Because of the heavy quark spin symmetry, the particular choice of the
third component of the axial-vector current is not important. The same result
for £ (and with the same overall sign), can be obtained from any component
of v#~® current, or any other current, which gives a non-vanishing matrix
element. For the same reason, instead of 01_/2 — (];’/2 transitions, we can
choose, for instance, 01’/2 — 1;72 transitions, and specialize to any of the
three possible polarizations of the 1] /o State. Since IW functions are Lorentz
invariant, the particular choice of the reference frame also doesn’t matter. Any
convenient reference frame should yield the same result.

Let us now summarize the results obtained following the simple procee-

dure outlined above for several cases of interest. We emphasize that all the
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results given here were explicitly verified for all possible choices of T (i.e.,
[ = 1,7°,9*,v#+° and y*+"), and also in two convenient reference frames:
besides the rest frame of the 07/, meson, we have also used the Breit frame

(v = —v'), in which v* = (,/¢4%,0,0, —/¥5%) and v'* = (,/91,0,0,,/“5%).

2

Polarization vectors describing spin one states (e - v' = 0) were the standard

ones, €*) = :F%(O,l,:l:i, 0) in both frames, ¢ = (vw? —1,0,0,w) in the

rest frame of 0725 and €© = ( “’T’I, 0,0, “’T“) in the Breit frame. Let us
also, for the sake of simplicity, define
(@']®) = (2" ()81, (v)) , (3.12)

and state our results in terms of this overlap:

€o(w) = ”w—21—1<(bl|q)>’ (3.13)
Enlw) = ,/%(@'@), (3.14)
() = || (@18 (315)

31,
falw) = w_i_lm(q’\@- (3.16)

The definition (3.13) for ¢ agrees with the one given in [44,45]. As one can
see, different IW functions are related to overlaps of the LDF wave functions
through different kinematic factors. These factors are the reason why, for
instance, the inelastic form factors &g, & and &g do not vanish at zero recoil

point.
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3.3 Evaluating LDF Overlaps

In expressions (3.13)-(3.16), (®'|®) involve wave functions of the LDF in
mesons moving with velocities v and v’. Usually hadronic models provide
us with the wave functions in the meson rest frame. Because of that, it is
convenient to express the overlaps (®'|®) in terms of the wave functions de-
scribing the LDF in the rest frame of the particle. Following [45,46], in the

valence quark approximation we write for the rest frame LDF wave function
®O) (z) = O (x)e Mt | (3.17)

where Fj; denotes the energy of the LDF in meson M. The LDF wave func-
tion of the same meson moving with (ordinary) velocity B along the z axis

(laboratory frame), is then given by
®(a') = S(B)2(2) , (3.18)

with 2/ = A~!(8)z being the laboratory frame, = the rest frame of the meson,
and S(B) the wave function Lorentz boost.

Because IW functions are Lorentz invariant quantities, they can be calcu-
lated in any frame. Particularly convenient is the Breit frame, in which the
two mesons move with equal and opposite velocities. As noted in [45], the
wave functions relevant for the overlap (®'|®) are at ¢’ = 0 in the Breit frame.
Therefore, denoting the three-velocity of the final meson as B, by the use of
(3.18) we have

(@@)0) = [dad ()o@ |0

= [ &0 (@)S'(B)S(-B)2 () =0
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/ &' SO (2, )8 (2 )|y—p - (3.19)

In this expression z, and x_ denote the rest frames of the final (moving in
the +z direction) and initial meson (moving in the —z direction), respectively.
To obtain the last equation we have used the fact that Lorentz boosts satisfy
St(B) = S(B) = S~(—B), so that boost factors cancel out. Also, we have
(8=18l)

x:l:|t’:0 = A(iﬂ)ml|t’=0 = (q:f)/ﬁz’axl: ylafyzl) ) (320)

where, in terms of w,

1
yo= (S (3.21)
2
w—1
= ; 3.22
b w+1 ( )

Using (3.17) and (3.20) in (3.19) we find

(®'(v)|®(v)) = / &2’ ¢,y 72O (@', o, 72 e MR (3.23)

After rescaling the 2’ coordinate (2' — %z’ ), renaming integration variables,

and using kinematical identities (3.21) and (3.22), we obtain

@ W)00) = | [EapO @) ()e e, (329

w-—1

This formula was first obtained in [45] for the semileptonic B — D (C' — (')

where

and B — D* (C — C*) decays (where Ey = Ey = E¢). To illustrate the use
of the results obtained in this section, we next consider the spinless constituent

quark model as one simple example.
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3.4 Spinless Constituent Quark Models

Assuming that we can describe heavy-light mesons using a particular spinless
constituent quark model, the rest frame LDF wave functions (with angular

momentum j and its projection J);), can be written as

n 1 . 1
O3 (@) = 3 Run(r) Vi, (o, (Lmis 5mali A L3) - (3.26)

mp s

In the above expression x,,, represent the rest frame spinors normalized to one,
Xjn's Xms = Omim,; Rnr(r) is the radial wave function, and Y7, are the usual
spherical harmonics. Explicitly, taking into account relevant CG coefficients,

the states that we need are

17 (@) = Ruo(r)Yoo(@xy . (3.27)
AP@ = Ru 3@y —y5Ye@x),  (G29)
V@) = Bu()l3u@x g +3Y0@x], (29
AP @) = Rl Y@y = [2Yal@] . (330)

—ikz

Now, using the well known expansion of a plane wave e in terms of spherical

Bessel functions j;(kr),

) ) 4
—thz — 21 + 1) (=), (kr)y | ——Y, 31
e ;( + D)= 5u(kr)y 57 Yoo (3.31)

together with the wave functions given above, the overlap (3.24) gives!

BP0 = | lolar)ir (3.32)

1Using states analogous to (3.27)-(3.30), but for A; = —3, one can indeed verify that all
overlaps indeed satisfy (3.3) and (3.4).



B 0) = iy i)
@) = —ivE )i
2

@R 0) = VB ()i

where

(P = [ rdr By (1) Rus (1) F(r) -
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(3.33)

(3.34)

(3.35)

(3.36)

At this point, one can readily obtain expressions for the IW functions

(3.13)-(3.16) in terms of the radial wave functions and energies of the LDF.

One can also find form factors and their derivatives at the zero recoil point.

Let us summarize here the results [42] (ignoring irrelevant phase factors and

suppressing quantum numbers n' and n):

® 0., = 0p,1, (C = C,C") transitions.

2 . . w—1
60(&)) = w—H<]0(CLT)>00 y Wlth a = (EC -+ EC”) w— s

&c(1) = (L)oo

§e(l) = — %+ 11_2(EC’ +EC')2<T2>00] .

® 0y = 07)y, 1f)5 (C — E, E*) transitions.

£6() = o i{ar)ho, with a = (B + Bi)y/ 25

5(1) = 3 (Fe + ) (r)o

IE(l) = — é(EC + EE)<7'>10 + 61—0(EC + EE)3<T3)10:| .

(3.37)
(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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® 0,y = 135,25, (C — F, F*) transitions.

3 2 . ) w—1
€p(w) = ”oﬂ — 1w—+1(]1(a7“))10 ,with a = (E¢+ FEF) o1 (3.43)

Er(l) =

7<EC+EF)< o ; (3.44)
1
(E E Ep)3{(r® . 3.45
=~ 5B+ Belrhut oo+ FrP(oh] - (349
o 07y = 13,25, (C = G,G) transitions.

2v/3 w—1

€a(w) = 2 1<]2(a7’)>20 , with a = (E¢ + Eg) R (3.46)
£a(l) = 10\/—(E0+EG) (r*)20 , (3.47)
¢n(1) = 10\/_(EC+EG) (r2)20+2801\/5(EC+EG)4(7°4)20] . (3.48)

Note that these expressions include transitions from the ground state into
radially excited states. If the two C states are the same, £-(1) is normalized
to one and Ex = E¢. Otherwise, £¢(1) vanishes because excited states are
orthogonal to the ground state. From (3.39) we reobtain the bound —&(1) >
1/2 [45], which is lower than the bound obtained from the Bjorken sum rule
(2.49) (—&-(1) > 1/4) [22,23]. Both upper bounds follow from the basic
principles and are not inconsistent. From (3.41) and (3.44) one can see that
the P-wave form factors £g and £ do not vanish at zero recoil point, which
is consistent with sum rules (2.49) and (2.51). Furthermore, since spinless
models do not distinguish between the two P-wave doublets (Er = Er and
wave functions are the same), from (3.40) and (3.43) we find

w—+1

gE(w) = \/g

Er(w) , (3.49)
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and in particular

£(1) = %&(1) . (3.50)

Equations (3.37)-(3.48) are among the principal results of this thesis.

3.5 Models Based on Dirac Equation

Important class of models, especially in the heavy-light limit, are those based
on the Dirac equation. Our results from the previous section [42] can be gener-
alized to any model involving the Dirac equation with a spherically symmetric

potential. There, the wave function has the form

n ni (MY, (Q)
G (@)= T (3.51)

Zgnj(r)yj)\j ()
where Y%, are the spherical spinors, k =1 (I = j+3) ork = ~l-1 (I = j—3),
and n again denotes all other quantum numbers. Using (3.51) it can be shown

that all the expressions (3.32)-(3.35) and (3.37)-(3.48) are unchanged, except

that the expectation value (3.36) is replaced by [42]

(F(r))pp — (F(r)j; = / r2dr( £ (r) fy(r) + i (r)gn (N F(r) . (3.52)

It is important to realize that now (E, E*) and (F, F*) doublets are no longer

degenerate, so that we do not have relation between &g and &, such is (3.49).

3.6 Comparison with Literature

We have already mentioned that kinematic factors in definitions of IW func-

tions have to be taken correctly into account. Otherwise, significantly wrong
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results for the heavy-light meson decays can be obtained. One such example
is approach developed by Ali et al. [47] (AOM), and later used in [48-51].
There, apart from irrelevant phase factors, different IW functions are identi-
fied directly as overlaps of the wave functions of the initial and the final state
of the LDF in the rest frame of the initial meson. Explicitly (putting a tilde

over the AOM form factors to avoid confusion),

Eo(w) = Gol@r))eo , with @ = Ecrvw? — 1, (3.53)
Ep(w) = V3{i(ar)) , withd = Egvw? -1, (3.54)
Er(w) = V3({ji(ar))y , with @ = Epvw? -1, (3.55)
fo(w) = VbB(ja(ar))e , with & = Egvw? — 1. (3.56)

As pointed out in [42], this formulation has several difficulties. For example,
the zero recoil slope of the IW function &¢ for semileptonic B — D, D* decays
doesn’t necessarily obey the Bjorken sum rule bound. The easiest way to
see that is to use harmonic oscillator (HO) wave functions as wave functions
of the LDF.2 It is straightforward to show that the 1S5 HO wave function,
Ris(r) = 2832 exp [—-B%r? /2] /7/*, where B is variational parameter, gives

E2,

(1) = ~35 (3.57)

For some choices of F and 3 this clearly can violate the Bjorken bound of

& < —1/4. Using values from the ISGW model [17], 8 ~ 0.40 GeV and

2This approach was advocated by Isgur et al. [17] (within the ISGW model), and widely
followed in the literature. However, there is no justification whatsoever for description of
meson states with a single HO wave function. We use it here for purpose of illustration only,
and not for any real calculation.
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Figure 3.1: The elastic form factor {¢ for semileptonic B — D, D* decays,
obtained using 1S HO wave function, with 5 = 0.40 GeV. Our result (full
line) is obtained from (3.37), while the AOM result (dashed line) follows from
(3.53). We assumed FEor = FEg = 330 MeV.

Eo =~ 330 MeV, one gets
£o(1) ~ =034, (3.58)
which is too large [52]. On the other hand, the same wave function used in

(3.39) gives (E¢c = Ecr =~ 330 MeV)
£o(l) ~ —0.84, (3.59)

a result which is in much better agreement with the data [52]. Furthermore,
from (3.53)-(3.56) one can see that all form factors (except for &) vanish at
the zero recoil point, which is not consistent with sum rules (2.49) and (2.51).

In order to further illustrate differences between our form factors and the

ones of Ali et al. [47], in Figure 3.1 we show results for the elastic form
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Figure 3.2: The inelastic form factors £ and & describing S to P-wave tran-
sitions for semileptonic B decays, obtained using 1S and 1P HO wave func-
tions, with 8 = 0.40 GeV. Our results (full lines) are obtained from (3.40)
and (3.43), while the AOM result (dashed line) follows from (3.54) (g = &F).
We assumed E¢ = 330 MeV and Egr = 770 MeV .

factor & for semileptonic B — D, D* decays,® obtained with 1S HO wave
function (8 = 0.40 GeV). Our result (VO) [42], shown with the full line, is
obtained from (3.37). The AOM result [47] (dashed line) follows from (3.53).
We assumed For = Ec = 330 MeV. As expected on the basis of slope
estimates (3.58) and (3.59), the AOM form factor is much flatter than ours,

which leads to higher branching ratios for these decays. In Figure 3.2 we

show inelastic P-wave form factors £z and & for semileptonic B decays.* For

3The kinematic limit for B — D decays is Wz ~ 1.6, while for B — D* decays it is
Wmaz = 1.5.

4For these decays the kinematic limit is wyqae ~ 1.3.
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the LDF energies we assumed E¢ = 330 MeV and Egp = 770 MeV 5 and
for the LDF wave functions we used 1S and 1P HO basis states (Rip(r) =
\/8/38%/%r exp [—?r?/2]/m/*), with 3 = 0.40 GeV. From that figure it is

clear that our form factors qualitatively differ from the AOM result.

3.7 Conclusion

In this chapter we have presented a simple method for relating form factors,
defined within the covariant trace formalism [16,32-34], to the explicit overlaps
of the rest frame wave functions describing the initial and the final states of the
light degrees of freedom [42]. We have obtained explicit formulae for several
transitions of interest (from the ground state 0y, into a few lowest excited
states), and have shown how one can apply these expressions in the spinless
constituent quark models, and in models involving the Dirac equation with
spherically symmetric potentials. These results are central to this thesis.
Expression (3.37) has already been used in several hadronic models for cal-
culation of {¢ (which describes semileptonic B — D, D* decays). For instance,
the bag model was employed in [45], while the Dirac equation with color elec-
tric potential was used in [46]. In [53] £ was obtained from the Dirac equation
with scalar confinement, and also from the Salpeter equation with vector con-

finement. Predictions of the relativistic flux tube model based on the Salpeter

5 Assuming that the lowest (E, E*) doublet in D-systems has spin-averaged energy of
~ 2350 MeV, then experimental masses of D1 nd D3 mesons lead to spin-averaged energy
of ~ 2414 MeV for the lowest 1P state. Since the spin-averaged mass of D and D* mesons
is 1974 MeV, the 1P LDF energy should be ~ 440 MeV higher than the 1.5 LDF energy.
Therefore, Ec = 330 MeV leads to Eg,r = 770 MeV.
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equation are given in [54]. As far as spinless calculations are concerned, in [55]
&c was obtained from the spinless relativistic flux tube model, while authors
of [56] used the 1.5 lattice QCD heavy-light wave function from Duncan et al.
[57], together with experimental data on semileptonic B — D, D* decays [52],
in order to extract information on the energy of the light degrees of freedom
in 15 heavy-light states.

We have also pointed out several inconsistencies in form factor definitions
present in the approach of Ali et al. [47]. Because of those inconsistencies,
in [47] significantly incorrect results were obtained for branching fractions of
radiative rare B decays into higher K-resonances. We shall leave a full account

of the radiative rare B decays within HQET framework [58] for Chapter 6.
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Chapter 4

Hadronic Models in the Heavy Quark

Limit

4.1 Introduction

We have seen in previous chapters that heavy quark symmetry (HQS) signif-
icantly reduces the number of independent form factors describing decays of
heavy-light mesons. Nevertheless, the remaining form factors cannot be calcu-
lated from first principles. In order to estimate them, we have to rely on some
model of strong interactions. In Chapter 3 we have found precise form factor
definitions in the valence quark approximation [42], which are consistent with
the covariant trace formalism [16,32—-34]. The task of this chapter is to provide
reliable and self-consistent hadronic models in the heavy-light limit, which can
be used for the calculation of these form factors.

It is a well known fact that almost any relativistic quark model which in-
volves a reasonable quark-antiquark potential will adequately reproduce the
spin-averaged spectrum of the heavy-heavy and heavy-light states. Almost

all successful potentials are based on some variant of a one-gluon-exchange
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(Coulomb) part plus a confining part expected from QCD. However, the spe-
cific choice of parameters of the model is usually based only on their ability to
reproduce data. That and the fact that parameters of the model are correlated
as far as meson spectrum is concerned,! is the main reason why one can find
nearly as many different sets of parameters for the same model, as there are
papers using that particular model.

Here we advocate an analysis which uses the linear Regge structure of a
given relativistic quark model [59-64], together with sum rules [22-24] of the
heavy quark effective theory (HQET), in order to constrain confining parame-
ters of that model. To determine other parameters, appropriate for the heavy-
light limit, we use spin-averaged heavy-light meson spectrum. We shall present
this analysis in more details using the simplest and widely used generaliza-
tion of the nonrelativistic Schrédinger equation, the so-called spinless Salpeter
(SSEQ), or the square root equation. We shall then use the same analysis to
investigate several other models in the heavy-light limit: spinless relativistic
flux tube model (RFTM), Salpeter equation with vector confinement (SEVC),
flux tube model based on the Salpeter equation (SFTM), Salpeter equation
with half-half mixture of vector and scalar confinement (SVSC), and Dirac
equation with pure scalar confinement (DESC). We must emphasize that the
goal of the analysis, which will be described in the next section, is not to say
whether a particular model is right or wrong in terms of the type of confine-

ment, or the particular potential it uses. Instead, its purpose is to show how

!By this we mean that changing one parameter in the model inevitably leads to changes
in other parameters. For example, it is much easier to determine the difference between b
and ¢ quark mass from the meson spectrum, than it is to determine either mass.
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one can construct a model which yields not only a good description of the
spin-averaged meson spectrum (in our case it is the heavy-light spectrum),
but is also consistent with experiment in terms of its Regge structure, and
self-consistent with respect to the sum rules in the heavy-light limit.

There are at least two good reasons for investigating so many different
models in this chapter. On one hand, by trying to constrain parameters of a
particular model, we can shed some light on a model itself. On the other hand,
by using many qualitatively different hadronic models we can estimate the
model dependence of the unknown form factors and branching ratios describing
decays of heavy-light mesons. This will be useful in Chapter 5, for investigation

of semileptonic B decays.

4.2 Spinless Salpeter Equation (SSEQ)

4.2.1 Description of the Model

In the meson rest frame, Hamiltonian of the SSEQ is given by [65-69]>

H:\/mg_—i-p?—f—\/mé—i-p?—i-V(r) , (4.1)

where p? = p? + L?/r?, while m; and my are the constituent quark masses.
The potential interaction V'(r) usually contains the one-gluon-exchange and

the confining part, i.e., V(1) = Veons(7) + Voge(r). We take

4 o
Voge(r) = 37 (4.2)

2Numerical methods for solving SSEQ, and all other models investigated in this chapter,
are briefly described in Appendix A.
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Veonp(r) = br+c. (4.3)

The necessity of adding a (negative) constant to the usual linear confining po-
tential was shown in [70], from the nonrelativistic limit of the Bethe-Salpeter
equation. There it was emphasized that ¢ is a parameter which is as funda-
mental and indispensable as the quark masses, slope of the linear potential b,
and the strong coupling constant o,.3

One can find many papers? in the literature which use the above model
with or without relativistic corrections (e.g., the spin-orbit and color hyper-
fine interaction), which are completely specified in terms of quark masses and
parameters of Vo, (1) and Vyg(r), with the fixed effective or with some sort
of running coupling constant. For the sake of simplicity, we use an effective
short range coupling constant.

As one can see from (4.1), (4.2) and (4.3), in order to completely specify
the model, which in our case should be able to reproduce spin-averaged heavy-
light meson states, we need seven parameters:> four constituent quark masses,
i.e., mMyq, ms, m, and m,, strong coupling constant o, and two parameters
specifying the confining part of the potential, b and c. There is little one can
say about quark masses or ay, since these are expected to run as one goes from
the light-light to the heavy-light and heavy-heavy systems. These parameters

are usually determined from the spectrum of states which one needs. However,

3Under additional assumptions an even stronger result ¢ ~ —2v/bexp (—yg + 1/2) was
obtained in [70]. We shall, however, consider ¢ as an independent parameter.

4References [65-69,71-74] are just a few of them. Probably the most ambitious and the
most sophisticated version of the model is due to Godfrey and Isgur [68].

5We assume that the u and d quarks have the same mass.
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we can try to constrain the confining part of the potential so that the model

is at least self-consistent in the light-light and the heavy-light limits.

4.2.2 Regge Structure

Let us first consider the effective string tension b. It is a well known experi-
mental fact that all light-quark hadrons lie upon linear Regge trajectories with
a universal slope [75]. While it may have been already pointed out in the past
[59-64] we would like to reemphasize here the relation between linear trajecto-
ries, linear confinement, and relativistic dynamics. It seems inescapable that
massless quarks bound by a linear confinement potential generate a family of
parallel linear Regge trajectories, whose slopes depend on the Lorentz nature
and other properties of the interaction.

The leading Regge slope follows from the correspondence (classical) limit.

The lowest energy state of (4.1) for a given large angular momentum results

OH

for circular orbits at large r and p. The minimal energy condition %~ L= 0
implies that (p, = 0, p — L/r)
1 1
Lp(— + —) =br’ 4.4

where Bz = |/p? +m2 and Eg = ,/p? 4+ mj. For alight-light meson mgq — 0,

E;q — p, and hence (4.4) gives 2L = br®. This, together with H — 2L/r+br,
implies that the Regge slope is given by [64]

L 1

Combining (4.5) with the observed slope of the leading p trajectory [31,75],

of?P =0.88 GeV ™2 | (4.6)
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Table 4.1: Parameters of the confining part of the potential used in several
papers which employed the relativistic generalization of the Schrodinger equa-
tion (SSEQ) given in (4.1), with the same type of the confining potential (4.3).
The one-gluon-exchange potentials used in these papers are not necessarily
the same as (4.2). Reference [72] used two different values for ¢ for descrip-
tion of D and B mesons. To obtain the universal Regge slope SSEQ requires
b = 0.142 GeV?, while the range of the ¢ values for which this model is con-
sistent with HQET sum rules depends on other parameters and assumptions
of the model.

Author(s) Reference b [GeV?] —c [MeV]
Durand and Durand (1984) [67] 0.180 0
Godfrey and Isgur (1985) [68] 0.180 253
Jacobs et al. (1986) [69] 0.192 0
Lucha et al. (1992) [71] 0.211 850
Fulcher et al. (1993) [72] 0.191 246 (214)
Fulcher (1994) 73] 0.219 175
Hwang and Kim (1996) [74] 0.183 0

we see that, in order for the model to be consistent with experiment in the

light-light limit, we have to require
b=0.142 GeV” . (4.7)

This requirement is often overlooked in the literature,® and b is usually fixed to
be about 0.18 GeV'? (or slightly larger, see Table 4.1 for a few examples), which
is a value suitable for models with the Nambu string slope of o, = 1/(27b)
(e.g., flux tube models [76-78]).

A similar result for the effective string tension b can also be obtained from

6 A most recent example is Ref. [74]. There (4.1) was used with several different poten-
tials, and they were all inconsistent with the Regge structure of the model in the light-light
limit,.
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the Regge behavior of the model in the heavy-light limit, since it is expected
that the Regge slope for the energy of the light degrees of freedom is twice the
slope for the light-light case [64], i.e., o;; = 2. Indeed, in our case for a
heavy-light meson we have Eg — mg — oo and E; — p (mg — 0), and hence
(4.4) gives L = br?. Together with H — mg + L/r + br, this yields

L 1
i
= = — . 4.
O, (H . mQ)2 4b ( 8)

We should also note that the results (4.6) and (4.8) depend on the nature of
the confining potential used with (4.1), and that the above arguments can-
not be used with models which do not exhibit linear Regge behavior (e.g.,

nonrelativistic quark model).

4.2.3 HQET Sum Rules

Let us now consider the heavy-light limit of (4.1),

H " mq +/m2+p*+V(r) . (4.9)

It is clear that in this case the constant ¢ can be absorbed into the heavy
quark mass by mg — mg — ¢, and that the heavy-light spin-averaged meson
spectrum by itself does not contain enough information to determine c. How-
ever, additional constraints on the value of ¢ can be obtained from the Bjorken
[22,23] and Voloshin [24] sum rules.

These two sum rules involve inelastic form factors £ and &g for the semilep-
tonic S to P-wave B (or By) decays, and are given in (2.49) and (2.51), respec-
tively. As already mentioned in Chapter 2, the sums in these two equations

are to be understood in a generalized sense, as sums over discrete states and
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integrals over continuum states. Since bound state models we are consider-
ing cannot say anything about continuum contributions to the Bjorken and
Voloshin sum rules, and since all contributions to the sums of (2.49) and
(2.51) are positive definite, one can argue that resonant contributions to the
right-hand sides of (2.49) and (2.51) should be smaller than the direct model
calculation of —¢/(1), and 1/2, respectively, if a given model is to be consis-
tent with these two sum rules. This is in fact the key argument of the sum
rule part of the model analysis.

In Chapter 3 we have found, in the valence quark approximation, precise
definitions of the form factors which appear in (2.49) and (2.51). These are
given in terms of the wave functions and energies of the LDF [42]. The relevant
expressions are for £(1), £g(1) and &r(1), and are given in (3.39), (3.41) and
(3.44), respectively. Since the model we are considering is spinless, the E and
F doublets are degenerate and relation (3.50) holds. Using (3.41) and (3.44),
one can simplify the expressions for both sum rules. The Bjorken sum rule

(2.49) in the spinless case becomes

661> 3 + 153 [(Be + BEE] | (410

while the Voloshin sum rule (2.51) is given by

11 EJ(EZ)F (i) 1% = A
52 132, — D |(Be+ Bop)ing] =4 (4.11)

In these two equations the sums are only over resonances, since we are neglect-
ing continuum contributions.
To understand the essence of the sum rule constraint, we first consider a

slightly oversimplified example. Assuming that non-resonant contributions are
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small, the equality sign holds in (4.10) and (4.11). If we also assume that the
sums in these two equations are saturated by the lowest P-wave doublets, then

(4.10) and (4.11) imply

1 1
—{o =~ 1T (2B + AE)*(r)y (4.12)
1 1 AF

In the above equations we have written ES)F = E¢c + AFE, where AE is just
the difference between the spin-averaged masses of the S-wave and the lowest

P-wave doublet.” From (4.13) one obtains
(2Ec + AE)*(r)3, ~ 6— . (4.14)

Using the above expression in (4.12), together with the bound —&;(1) > 1/2
from (3.39), we find
1
Ec > AE . (4.15)

This implies that energy of the LDF in the lowest S-wave mesons cannot be
smaller than one half of the difference between spin-averaged masses of the
lowest P-wave and the S-wave. In particular, this would also set a lower
bound on the constant ¢, which is usually assumed to be negative, or an upper
bound on the constituent heavy quark masses, since the energy of the LDF is
defined as the state mass minus the heavy quark mass.

We now go back to the model analysis of (4.10) and (4.11). As already

mentioned, for the description of heavy-light mesons we need seven parameters.

"If one assumes that the spin-averaged mass of the lowest (E,E*) doublet in the D
systems (corresponding to Dy and D; mesons), is about 2350 MeV, then this difference is
about 440 MeV.
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We have already determined the effective string tension b from the consistency
of the model with the experimental Regge slopes of light-light mesons. In
order to determine all other parameters except ¢, we can use the observed
heavy-light spectrum. Any change in c effectively just changes the constituent
heavy quark masses by the same amount, and an equivalent description of the
spectrum is obtained. It is also evident that the heavy-light wave functions are
not affected by this change. However, changing ¢ does affect the energies of the
LDF in the heavy-light mesons. This in turn affects the form factors predicted
by the model. The idea is that by examining the model predictions for the
right-hand sides of (4.10) and (4.11), one can determine physically acceptable
values of ¢, and other parameters of the model. As explained earlier, the
main requirement here is self-consistency of the model in the sense that its
predictions for the right-hand sides of (4.10) and (4.11) yield results which are
smaller than its direct calculation of —&,(1), and 1/2, respectively. However,
in order to account for all possible uncertainties in our calculations (e.g., effects
of spin-averaging of meson masses, assumption of the unknown P-wave masses,
etc.), we shall relax these constraints by 5%. This means that the sum rule
calculation of A should yield result smaller than 0.525 (instead of 0.5), and
that the sum rule calculation of —&(1) should yield result which is at most
5% larger than the result obtained from the direct calculation. In this way a
more conservative bounds on ¢ will be obtained.

In order to illustrate the above ideas, we consider two sets of parameters:

e Set 1: we fix ¢ = 0 and m,, 4 = 350 MeV, and a fit to the spin-averaged

heavy-light meson spectrum yields mg; = 542 MeV, m, = 1366 MeV,
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Figure 4.1: Comparison of the SSEQ direct calculation of —£(1) (full lines)
with the Bjorken sum rule result, obtained with 15 lowest P-wave states
(dashed lines). 1 and 2 denote the two different sets of parameters, as ex-

plained in the text. The dotted line is the bound —&;(1) > 3 coming from

(3.39). The results shown are for B — D, D* semileptonic decays.
my = 4703 MeV, and a, = 0.390.

e Set 2: we fix ¢ =0 and m, q = 300 MeV, and from the fit to the heavy-
light data we obtain my = 503 MeV, m, = 1390 MeV', m, = 4726 MeV,
and o, = 0.390.

For both of these two sets we used b = 0.142 GeV? from (4.7), and both of
them yield an excellent description of the known heavy-light (spin-averaged)

meson masses, with errors less than 5 MeV.® Using the parameters which

8We have assumed that the D (OIL/2 state) and D, (1;72 state) mesons have a spin-

averaged mass of 2350 MeV, which together with the known P-waves D;(2425) and
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Figure 4.2: SSEQ Voloshin sum rule calculation of A with 15 lowest P-wave
states (full lines), for the two different sets of parameters 1 and 2. The ex-
pected upper bound of 0.5, and the 5% relaxed bound of 0.525 are shown with
the dotted and dashed line, respectively. These results are for B — D, D*
semileptonic decays.
reproduce spin-averaged data, and also an effective string tension consistent
with experiment, gives us confidence that the unknown spin-averaged meson
masses for radial excitations are reproduced reasonably well.

For both of these two sets, and for ¢ ranging from 0 to —600 MeV, we
have evaluated —¢, directly using (3.39). Using 15 lowest P-waves we have

also evaluated the right-hand sides of (4.10) and (4.11). The results of our

calculations (for B — D, D* semileptonic decays) are shown in Figures 4.1

D3(2459) leads to the spin-averaged mass of 2414 MeV for the lowest P-wave in the D
systems. Heavy quark symmetry arguments then imply a spin-averaged mass of 2523 MeV
for the corresponding lowest P-wave in the D, systems.
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Figure 4.3: Convergence of the SSEQ Voloshin sum rule evaluation of A (for
B — D, D* semileptonic decays). Plotted with full lines are calculations done
with 1, 5, 10, and with 15 lowest P-wave states, for parameter set 1. The
expected upper bound of 0.5, and the 5% relaxed bound of 0.525 are shown
with the dotted and dashed line, respectively.

(for the Bjorken sum rule) and 4.2 (for the Voloshin sum rule). As one can see
in Figure 4.1, both sets of parameters can satisfy the Bjorken sum rule in the
sense that the direct calculation of —&;;(1) yields larger result than the sum
rule approach. Imposing weaker requirement, i.e., that the sum rule result is at
most 5% larger than the direct result, for both sets we find ¢ < —185 MeV. We
also note that for this value of ¢, —£/(1) ~ 0.71 (for set 1) and —&,(1) ~ 0.70
(for set 2). With the Voloshin sum rule (Figure 4.2) the situation is completely
different. The minimum of A(c) for the parameter set 2 is slightly larger

than 0.525 for ¢ = —0.342, so that parameters from this set cannot satisfy

even the weaker constraint A < 0.525. On the other hand, for the set 1
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minimum of A(c) is 0.501, and it occurs for ¢ = —364 MeV.? Imposing
the requirement A < 0.525 we find 235 MeV < —c¢ < 445 MeV. In order
to illustrate convergence of the two sum rules, in Figure 4.3 we show SSEQ
Voloshin sum rule calculations of A done with parameter set 1, which included
1, 5, 10, and 15 P-wave resonances.'®

Therefore, in the two cases considered, we found the Voloshin sum rule
being more restrictive than the Bjorken sum rule. Imposing the weaker con-
straint A < 0.525, we also found that model is self-consistent with parameter

set 1, with

235 MeV < —c < 445 MeV . (4.16)

These values of ¢ imply 1601 MeV < m, < 1811 MeV, and 4938 MeV <
mp < 5148 MeV.

We have also repeated the sum rule calculations for the B, — Dy, D7
semileptonic decays with the same sets of parameters (the difference is basi-
cally only the light quark mass), and found that these decays are much less
restrictive than B — D, D* decays. The same happens for all models investi-
gated in this chapter.

For the SSEQ calculation of semileptonic B decays in Chapter 5 we choose

Tt is also interesting to observe that the minimum of the function A(c) always occurs
close to the point at which Bjorken sum rule approach yields —&;,(1) = 1/2. This can
be shown analytically from (4.12) and (4.13), and can be seen from Figures 4.1 and 4.2.
However, this is not necessarily the case with models based on the Dirac (or Salpeter)
equation.

0Due to factors involving energies of the LDF in (4.11), the Voloshin sum rule converges
slower than the Bjorken sum rule. This can be clearly seen in Table 4.2.
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Table 4.2: Sum rule contributions of different P-wave states to —&.(1) (Rg)
and A (Ra). E and F denote the ground state P-wave, Fy and F5 the first
radial excitation, etc. SSEQ parameters are given in (4.17). Expected results
are —&;(1) = 0.590 and A = 0.5, while the sum rule results (using 15 P-wave
states) are —&(1) = 0.547 and A = 0.503.

State Mgr &r(l) €r(l) R RA

[MeV] %] %]
E F 2416  0.616 0.534 90.68 90.52
Ey, F, 2750 0.072 0.062 0.64 2.16
E5, F3 3028 0.078 0.067 0.78 3.44
E, F, 3269 0.037 0.032 0.17 0.94
Es, F5 3485 0.034 0.030 0.15 0.96
E, Fy 3682 0.024 0.020 0.07 0.50
E; F; 3864 0.021 0.019 0.05 0.48
Esg, Fy 4034 0.017 0.015 0.03 0.32
Ey, Fy 4194 0.015 0.013  0.03 0.28
Ey, Flo 4346  0.013 0.011  0.02 0.18
FEy,F;; 4491  0.012 0.010 0.02 0.20
Fy, F1o 4629  0.011 0.009 0.01 0.16
Eis, F13 4762  0.010 0.009 0.01 0.14
Ey, Fyy 4890  0.009 0.008 0.01 0.12
Ei5, Fi5s 5013 0.008 0.007  0.00 0.12
total 92.67 100.52
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parameters corresponding to ¢ = —330 MeV', which are given as

myq = 0.350 GeV
m, = 0.542 GeV |
m. = 1.696 GeV ,
my = 5.033 GeV (4.17)
a; = 0.390,
b = 0.142 GeV? |
c = —0.330 GeV .
The chosen value for ¢ is well within the range given in (4.16) and close to
the minimum of A(c). Model with the above parameters yields the zero-recoil
slope of £, ~ —0.59.'! In Table 4.2 we show sum rule contributions of different
P-wave states to —¢.(1) and A. SSEQ predictions for the spin-averaged heavy-
light masses, obtained with parameters given in (4.17), can be found in Table
4.3. Note that the energy of the LDF in the S-wave (C, C*) heavy-light meson
corresponding to the above value of ¢ is about 280 MeV', which is within the
allowed range of values for F¢ obtained in [56] from the analysis of recent
data on semileptonic B decays, and using the 1S lattice QCD heavy-light
wave function from [57].12
The most serious concern which one might have about our sum rule analysis
of SSEQ), is the issue of degeneracy of the two P-wave doublets, which is due

to the spinless nature of this particular model.'* While it is certainly true that

UExperimental result for the form factor & (which in the absence of the symmetry
breaking corrections would be the Isgur-Wise function &¢), is —§(1) = 0.84 £0.12 £ 0.08
[52].

12Tn [56] it was found that 266 MeV < Ec < 346 MeV.

BFor models based on the Dirac or Salpeter equation this issue vanishes, since these
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the uncertainties introduced in this way should partly cancel out (due to spin-
averaging, contributions of some states to sum rules will be overestimated, and
for other states they will be underestimated), we have still tried to account for
possible theoretical errors by relaxing the sum rule constraints by 5%. Also
note that including more radially excited states would yield more strict bounds
on the acceptable values of ¢, than is the one we quote for the parameter set
1. Given all that, we believe that (4.16) represents reasonably conservative
estimate. This conclusion is also supported by the comparison of the values

for E¢ obtained here with the ones obtained in [56].

4.3 Relativistic Flux Tube Model (RFTM)

The relativistic flux tube model is in essence a description of dynamical con-
finement. Its basic assumption of is that the QCD dynamical ground state for
large quark separation consists of a rigid, straight, tubelike color flux configu-
ration connecting the quarks. The classical Lagrangian and the corresponding
equations of motion have been known for a long time [76], but quantum-
mechanical version of the model has been developed only recently [77,78]. It
should also be mentioned that spinless RF'TM follows directly from the QCD
Lagrangian, with natural approximations to the Wilson action [79,80].

In the heavy-light limit, the RFTM Hamiltonian is given by [78]

arcsin v

1 b
H=mg+ 5 {W i} +5{r, et Vigelr) . (418)

models distinguish between (E, E*) and (F, F*) doublets. Because of that, sum rule analysis
of these models should be more reliable than the one appropriate for the spinless models.
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In the above we defined {A, B} = AB + BA, and

W, = JeEtme, (4.19)
r ror? ’

1
R — (4.21)

V1 —v%

The one-gluon-exchange interaction is given in (4.2). For a state with orbital

(4.20)

angular momentum L, the unknown operator v; can be determined by solving

the corresponding quantized angular momentum equation [78]

L(L+1
¥ = %{Wr,wu} +b{r, f(vi)} , (4.22)
where
1 [arcsinv, 1
flor) = o < o 7—L> : (4.23)

We note that the short distance interaction (expected from QCD) and the
constant ¢ in (4.18) are not part of the flux tube configuration, and are added
phenomenologically [78].

In [55] RFTM has already been used for calculation of the IW function
for semileptonic B — D, D* decays. However, constant ¢ from (4.18) was in
that paper simply absorbed into the heavy quark mass. Here we perform the
analysis analogous to the one described in Section 4.2, in order to determine
the allowed range for c.

It is not hard to show [78] that RFTM exhibits linear Regge behavior with

the slope

b= 4.24
8394 s ( )
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Figure 4.4: RFTM calculation of —&(,(1) (full line) for B — D, D* semileptonic
decays. Bjorken sum rule result is shown with the dashed line. The dotted

line is the bound —&{;(1) > 4 coming from (3.39).

which is exactly twice the slope obtained from the model in the light-light

limit. When combined with (4.6), the above equation implies
b=0.181 GeV?. (4.25)

Fixing the string tension to 0.181 GeV?, and choosing m,, 4 = 300 MeV,
we find that in order to reproduce the spin-averaged heavy-light spectrum®
we need (with ¢ = 0) ms =507 MeV, m. = 1332 MeV, my = 4668 MeV , and
as = 0.390. With these parameters, we have evaluated —¢&/, for semileptonic

B — D and B — D* decays directly, using (3.39). As before, we have also

14As in the case of SSEQ, we assumed that Dy (0F

1/, state) and D; (1f/2 state) have

spin-averaged mass of 2350 MeV.
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Figure 4.5: RFTM Voloshin sum rule calculation of A (full line) for B — D, D*
semileptonic decays. The expected upper bound of 0.5, and the 5% relaxed
bound of 0.525 are shown with the dotted and dashed line, respectively.

evaluated the right-hand side of the Bjorken sum rule (4.10), with the lowest
15 P-wave resonances (Figure 4.4). If we impose the weaker requirement that
the sum rule result can be at most 5% larger than the one obtained from the
direct calculation, then we find that ¢ has to be smaller than —110 MeV. On
the other hand, calculation of A from the Voloshin sum rule (4.11) (shown
in Figure 4.5) yields 5 MeV < —c¢ < 555 MeV as the allowed range for ¢
(with the 5% weaker constraint). One should observe though that this model
can easily satisfy the strong requirements, that the Bjorken sum rule result
for —£((1) should be smaller than the one obtained from (3.39), and that the

Voloshin sum rule result for A should be smaller than 0.5.° Unlike the case

5Imposing those constraints we would get 195 MeV < —c¢ < 545 MeV.
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of SSEQ, where both bounds on ¢ came from the Voloshin sum rule, in this
case the Bjorken sum rule provides the upper bound on ¢, while the Voloshin

sum rule gives the lower bound, so that we have
110 MeV < —c < 555 MeV . (4.26)

This range of allowed values of ¢ is twice as wide as the one we found for SSEQ.
For the heavy quark masses this result implies 1442 MeV < m, < 1887 MeV,
and 4778 MeV < my, < 5223 MeV. We emphasize again that (4.26) should be
considered as a conservative estimate, since imposing the stronger constraints,
and also including more P-wave states, would lead to a slightly narrower range
for allowed values of c. As in the case of SSEQ, semileptonic By — D;, D}
decays were found to be less restrictive than corresponding B decays from
which the above results were obtained.

For the calculation of semileptonic B decays, which will be presented in

Chapter 5, we choose parameters corresponding to ¢ = —200 MeV, so that

Mmyqg = 0.300 GeV ,
m, = 0.507 GeV |
me = 1.532 GeV
my, = 4.868 GeV | (4.27)
a, = 0.390,
b = 0.181 GeV?,
¢ = —0.200 GeV .

It can be seen in Figures 4.4 and 4.5 that model with these parameters satisfies

the stronger requirements for both sum rules, and also gives —&, ~ 0.70. With
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Table 4.3: SSEQ and RFTM predictions for the spin-averaged heavy-light me-
son masses. Model parameters are given in (4.17) for SSEQ, and in (4.27) for
RFTM. We have assumed that the unknown Dy and D; mesons (O;’/2 and 1;’/2
states) have spin-averaged mass of 2350 MeV. Heavy quark symmetry argu-
ments then lead to the spin-averaged mass of 2452 MeV for the corresponding
D,y and D, mesons. Errors for both models are shown in brackets.

Meson State Mass SSEQ RFTM

[MeV] [MeV] [MeV]
D(1867) Oy 15(1974) 1974(+0) 1976(+2)
D*(2009) 10,

Dy(~2350) 0

~ 17
D, (~ 2350) /2 | 1P(2414) 2416(+2) 2413(—1)
D1 3/2
Dj(2459) 27

(
(
(
(2425) 13
( 3/2 )
o-
(1969) 1/2 } 15(2076) 2075(—1) 2074(-2)
(2112) Lijs
w(~2452) 07

Do

~ 17
Dslg 2452) Y2 % 1P(2523) 2521(—2) 2524(+1)
D

+1(2535) 13/
D2,(2573) 2%, |

o
B(5279) 12 5 15(5314) 5311(=3) 5313(—1)
B*(5325) 17,

o
B, (5374) 12 1 15(5409) 5412(+3) 5410(+1)
B (5421) 1
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this value of ¢ the LDF energy in the S-wave heavy-light mesons is 445 MeV,
which is about 100 MeV above the range obtained in [56]. RFTM results for
the spin-averaged heavy-light states (obtained with parameters given above)

are compared to experiment in Table 4.3.

4.4 Salpeter Equation with Vector Confine-

ment (SEVC)

The instantaneous version of the Bethe-Salpeter equation [81,82] (usually re-
ferred to as the Salpeter equation [83]) is widely used for the discussion of
bound state problems. It is also equivalent [84] to the so called “no-pair”
equation [85], which was introduced in order to avoid the problem of mixing
of positive and negative energy states that occurred in the Dirac equation for
the helium atom. A similar problem also occurs for a single fermionic particle
moving in the confining Lorentz vector potential. For a very long time [86] it
has been known that there are no normalizable solutions to the Dirac equation
in this case.

It has been shown analytically for the heavy-light case [53], and numeri-
cally for the case of fermion and antifermion with arbitrary mass [87,88], that
in this type of model linear scalar confinement does not yield linear Regge tra-
jectories. Because of that, in this section we investigate the time component
vector confinement with short range Coulomb interaction, even though it is
well known that this model gives the wrong sign of the spin-orbit coupling.

The flux tube model based on the Salpeter equation (SFTM) will be discussed



68

in Section 4.5, while the Salpeter equation with a half-half mixture of vector
and scalar confinement (SVSC) will be investigated in Section 4.6.
The Hamiltonian for the heavy-light Salpeter equation with vector confine-

ment is given by [53]
H=mg+H;+ A V(r)Ay . (4.28)
In the above, Hj is the free particle Dirac Hamiltonian,
Hy =’y p+7"mg (4.29)

while V(r) = Voge(r) + Veons(r) is the time component vector interaction,
with Vi (r) and Vionr(r) being specified in (4.2) and (4.3), respectively. The
positive energy projection operator A is defined as (E; = |/p* + m2)

_ Eqt Hy

A
* 2F;

(4.30)

In [53] it was shown that this model exhibits linear Regge behavior with
the slope

which, together with (4.6), implies the same effective string tension as in the
case of SSEQ), i.e.,
b=0.142 GeV? . (4.32)

For models based on the Dirac (or Salpeter) equation, the sum rule part
of the analysis is slightly different from the one described in Section 4.2. As

explained in Section 3.5, in these models the two P-wave doublets are not
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Figure 4.6: SEVC calculation of —&,(1) (full line) for B — D, D* semileptonic

decays. The Bjorken sum rule result is shown with the dashed line. The dotted

line is the bound —&{;(1) > 4 coming from (3.39).

degenerate. Instead of (4.10), by using (3.41) and (3.44), and neglecting con-

tinuum contributions to (2.49), we find
1 i 0]’
(1) = 432 |(Be+ B
x @Dy @) ]

while instead of (4.11) we obtain

1 1 EY @@ ]
> - ZE _
5 2 2l U |[Ee+ B0
1  EY D7) ]
b (2R )[(EC+EF )(r)§l] —A. (4.34)
18 & B¢ 23

Using the property A ¢ = ¢ of the Salpeter wave function, it is not hard to
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Figure 4.7: SEVC Voloshin sum rule calculation of A (full line) for B — D, D*
semileptonic decays. The expected upper bound of 0.5, and the 5% relaxed
bound of 0.525 are shown with the dotted and dashed line, respectively.

show that in the SEVC model ¢ again just renormalizes the heavy quark mass,
as was the case with SSEQ and RFTM. Therefore, we can again choose ¢ = 0,
and determine other parameters of the model from the fit to the observed
spin-averaged heavy-light meson states.'® Fixing m, s = 350 MeV and b =
0.142 GeV?, from the heavy-light spectrum we find m, = 620 MeV, m, =
1387 MeV, my = 4723 MeV, and a, = 0.527. We use these parameters for

the sum rule analysis of the model.

6For models based on the Salpeter (or Dirac) equation we do not need additional as-
sumptions for the mass of the unknown (E, E*) doublet in the D-systems.
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In Figure 4.6 we show comparison of the calculation of —£(1) (for semilep-
tonic B — D, D* decays) from (3.39), with the result obtained from the right-
hand side of (4.33), using the five lowest P-wave states. There one can see
that SEVC always satisfies the Bjorken sum rule. However, this is not the case
with the Voloshin sum rule (Figure 4.7). Imposing 5% weaker requirements

on sum rule calculations of A (i.e., A < 0.525) yields'’
155 MeV < —¢ <460 MeV . (4.35)

For the constituent heavy quark masses this result implies 1542 MeV < m, <
1847 MeV and 4878 MeV < my < 5183 MeV.
Following the same reasoning as before, we choose ¢ so that model obeys

the sum rule requirements. The choice of —240 MeV yields

myq = 0.350 GeV
ms = 0.620 GeV ,
m, = 1.627 GeV ,
my = 4.963 GeV | (4.36)
a, = 0.527
b = 0.142 GeV?
c = —0.240 GeV .
With these parameters we have the S-wave LDF energy of 350 MeV, and
find —&,,(1) ~ 0.71, which is slightly above the range found in [56]. Model

predictions for the spin-averaged heavy-light masses are given in Table 4.5.

"The uncertainties coming from spin-averaging of meson masses should be smaller for
the Dirac-type models, since these distinguish between the E, E* and F, F* doublets. Nev-
ertheless, in order to get a more conservative estimate on the value of ¢, we still impose
a 5% weaker requirements on the sum rule calculations. Note that imposing the stronger
requirements would, instead of (4.35), lead to 235 MeV < —¢ <430 MeV.
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4.5 Flux Tube Model Based on the Salpeter
Equation (SFTM)

The formalism for fermionic quark confinement in this model is unusual in that
the confinement is introduced into the kinetic rather than the usual interac-
tion term. The flux tube contributes to both energy and momentum, so it
makes little sense to consider it as a potential-type interaction. By a covariant
substitution [89] the tube is added to the quark momentum and energy. This
may be viewed as a “minimal substitution” of a vector interaction field. The
result nicely reduces to the Nambu string in the limit in which the quark moves
ultra-relativistically. This physically motivated generalization of the potential
model incorporates many aspects of QCD [54].

In [54] the flux tube four-momentum,

pi = (Hipy) (4.37)

where p, = (-1 X f:)pt was quantized by symmetrization of the classical ex-

pressions [77,78], so that

Hi(r) = g{r,a‘rcf‘j%}, (4.38)
p(r) = %:a{r, Fo)} . (4.39)

Here, the function f(v,) is given in (4.23). These expressions were then intro-

duced into the Salpeter equation by a “flux tube transformation” [89],

Pt — pt =i (4.40)
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As in the case of RF'TM, the short range interaction is not part of the flux tube
configuration, and has to be added separately. The resulting Hamiltonian for

the heavy-light systems can then be written in the form [54]'®
H=mg+ Hy+ A [Hy(r) + ¢+ Voge(r) — 7%y - pJAL . (4.41)

In the above Hj is the free Dirac Hamiltonian (4.29), and A; is defined in
(4.30). We again take V4 (r) = —4a,/(3r). When (4.41) is reduced to the
two radial equations, one ends up with the two unknown v, operators, one for
each orbital angular momentum state in the Salpeter (or Dirac) wave function
(3.51). These are determined from the corresponding orbital angular momen-
tum equations, similar to (4.22) [54].

SFTM yields linear Regge trajectories with the heavy-light slope of [54]

1
== 4.42
Oy, D ( )

which is the same as in the case of spinless RFTM. This again implies
b=0.181 GeV? . (4.43)

Fixing ¢ = 0 and m, 4 = 350 MeV, we determine other parameters of the
model from the fit to the observed heavy-light spin-averaged states. This leads
to my = 604 MeV, m. = 1331 MeV, my = 4667 MeV, and a, = 0.501. With
these parameters we perform the sum rule analysis of the model, using the five
lowest P-wave states in (4.33) and (4.34). Results are shown in Figures 4.8

and 4.9, for the Bjorken and Voloshin sum rules, respectively. As in the case

18Tn [54] ¢ was simply absorbed into the heavy quark mass. This can be done because
Salpeter wave function satisfies A ¢ = ¢.
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Figure 4.8: SFTM calculation of —&(1) (full line). Bjorken sum rule result
is shown with dashed line. The dotted line is the bound —&(1) > 1 coming
from (3.39). These results are for B — D, D* semileptonic decays.

of SEVC, the Bjorken sum rule is satisfied for all values of ¢, but the Voloshin

sum rule requirement yields'®
155 MeV < —c¢ < 530 MeV . (4.44)

The above result implies 1486 MeV < m, < 1861 MeV and 4822 MeV <
my < 5197 MeV for the constituent heavy quark masses.

Choosing ¢ = —230 MeV, we find parameters of the SFTM which will be

9This result is also obtained using A < 0.525. Stronger constraint (A < 0.5) would lead
to 225 MeV < —c < 510 MeV.



75

0.60 T

0.58

0.56

0.54

0.52

< 0.50

0.48

0.46

044

042

0.40 L

0.00 0.10

0.20

0.30
—[GeV]

0.40

050 0.60

Figure 4.9: SFTM Voloshin sum rule calculation of A (full line). The ex-
pected upper bound of 0.5, and the 5% relaxed bound of 0.525 are shown with
the dotted and dashed line, respectively. These results are for B — D, D*
semileptonic decays.

used in Chapter 5 for calculation of the semileptonic B decays:

My,d

)

Cc

0.350 GeV |

0.604 GeV |

1.561 GeV ,

4.897 GeV | (4.45)
0.501 ,

0.181 GeV?

—0.230 GeV .

These parameters imply the S-wave LDF energy of about 415 MeV', and also

—&,(1) =~ 0.77. Model predictions for the spin-averaged heavy-light masses
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are given in Table 4.5.

4.6 Salpeter Equation with a Mixed Vector

and Scalar Confinement (SVSC)

In [88] it has been shown that the full Salpeter equation, with a pure scalar
confinement and with arbitrary constituent quark masses, cannot be solved by
a variational method. In fact, it seems that the only kernel which leads to a
stable variational solution of the full Salpeter equation is the time component
vector kernel (7 x 7). Because of that, the confining kernel has to contain at
least one half of the 7° x 7* kernel if one wants to use a full Salpeter equation in
the description of meson states. Several authors have used this as a motivation
for considering the full Salpeter equation with a half-half mixture of v° x~v° and
1 x 1 confining kernels [90-93]. In this way, a maximal possible cancelation of
the unwanted spin-orbit splitting is achieved, while the stability of variational
solutions to the full Salpeter equation is still retained. As can be seen from
Table 4.4, in these papers a wide variety of confining parameters were used. In
this section we investigate heavy-light limit of the Salpeter equation in order
to determine the effective string tension b, and the allowed range for ¢ which
is consistent with the HQET sum rules.

The heavy-light Hamiltonian for the Salpeter equation with an equal mix-

ture of vector and scalar confinement is similar to (4.28),

The only difference is that now V(r) = Voge(r) + £(1 + 7°)Veony(r), where
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Table 4.4: Parameters of the confining interaction with an equal mixture of
7% x~% and 1 x 1 kernels used in several papers which employed the full Salpeter
equation. Zoller et al. [90] employed two different sets of confining parameters
for the heavy-heavy (HH) and the light-light (LL) mesons. Miinz [93] used two
different light quark masses, m, 4 = 220 MeV (SRM) and m, 4 = 330 MeV
(NRM), and determined other parameters of the model from the fit to the
light quarkonia. To obtain the universal Regge slope, Salpeter equation with
this mixture of vector and scalar confinement requires b = 0.284 GeV2, while
the range of values for ¢, for which SVSC satisfies the sum rule constraints,
depends on other parameters of the model.

Author(s) Reference b [GeV?] —c [GeV]
Zéller et al. (1995) [90] 0335  1.027
Klempt et al. (1995) [91] 0.410 1.751
Parramore et al. (1995) [92] (HH) 0.257 0
Parramore et al. (1995) [92] (LL) 0.374 1.427
Miinz (1996) 93] (SRM)  0.366  1.273
Miinz (1996) 03] (NRM)  0.386  1.418

Vioge () and V¢ () are again given in (4.2) and (4.3), respectively. As before,
Hj; is the free Dirac Hamiltonian given in (4.29), and A is defined in (4.30).

While it would be quite difficult, if not impossible, to investigate analyti-
cally the Regge structure of the full Salpeter equation in the light-light limit, a
similar analysis was done in the heavy-light limit [54]. There it was shown that
scalar part of the interaction cancels in the ultra-relativistic limit, and that
is precisely the reason why pure scalar confinement in the Salpeter equation
does not exhibit linear Regge behavior. The heavy-light Regge slope for an

equal mixture of vector and scalar confinement in (4.46) is

1
b= — 4.47
Chp 2p ( )
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Figure 4.10: SVSC calculations of —&(,(1) (full lines) for B — D, D* semilep-
tonic decays. Bjorken sum rule results are shown with dashed lines. 1 and 2
denote calculations done with b = 0.284 GeV? and b = 0.335 GeV2, respec-

tively. The dotted line is the bound —&;;(1) > £ coming from (3.39).

which, together with o/, = 20/, and (4.6), implies
b=0.284 GeV? . (4.48)

This value for the effective string tension is in general smaller than values used
in the literature (see Table 4.4).

In SVSC constant ¢ cannot be absorbed into the heavy quark mass in the
heavy-light limit. Because of that, the sum rule part of the model analysis
is not as simple as was the case for models investigated so far. We fix b =
0.284 GeV? and m, 4 = 350 MeV (parameter set 1), and for each value of ¢
we perform a new fit to the heavy-light spectrum in order to determine other

parameters of the model, which then can be used for evaluation of —¢&/,(1)
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Figure 4.11: SVSC Voloshin sum rule calculations of A (full lines) for
B — D, D* semileptonic decays. 1 and 2 denote calculations done with
b=0.284 GeV? and b = 0.335 GeV?, respectively. The expected upper bound
of 0.5 is shown with the dotted line, while the 5% relaxed bound of 0.525 is
shown with the dashed line.

and A. In Figures 4.10 and 4.11 we show results of our calculations with five
lowest P-wave states. As one can see, the Bjorken sum rule is satisfied for all
values of ¢ (which is the same as in the case of other two models based on the

Salpeter equation), while the requirement A < 0.525 yields
470 MeV < —c <720 MeV . (4.49)

Range for the constituent heavy quark masses corresponding to (4.49) are
1529 MeV < m, <1699 MeV and 4865 MeV < m; < 5035 MeV. Note that
we were unable to find parameters which would satisfy stronger constraint

A <0.5.
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Since values for b which can be found in the literature are mostly larger
than 0.284 GeV?, in order to see what are the effects of using larger b, we
have chosen b = 0.335 GeV? [90], and m,, 4 = 350 MeV (parameter set 2), and
repeated all calculations. Again, Bjorken sum rule was satisfied for all values
of ¢ (Figure 4.10), but this time we were unable to find parameters which
would satisfy even the relaxed Voloshin sum rule constraint (Figure 4.11).
The minimum of A(c) was 0.544 (the lowest P-wave contributed 0.513), and
was obtained for ¢ = —0.775 MeV.

We next summarize parameters of the SVSC which will be used in Chapter

5 for calculation of the semileptonic B decays:

Mua = 0.350 GeV ,
ms = 0.579 GeV ,
me = 1.549 GeV
my = 4.885 GeV | (4.50)
a; = 0423,
b = 0.284 GeV?,
¢ = —0.500 GeV .

The above parameters yield the S-wave LDF energy of 430 MeV, and also
—&4(1) ~ 0.78. Model predictions for the spin-averaged heavy-light masses

are given in Table 4.5.
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Figure 4.12: DESC calculation of —£;(1) (full line). Bjorken sum rule result is
shown with the dashed line. The dotted line is the bound —£,(1) > % coming
from (3.39). These results are for B — D, D* semileptonic decays.

4.7 Dirac Equation with Scalar Confinement
(DESC)

The last model we shall consider is the Dirac equation with pure scalar con-
finement, which is the only type of confinement potential that has the correct

sign of the spin-orbit coupling. The Hamiltonian for DESC is given by
H= mq + 707 "p+ Vo(mtj + ‘/;onf(r)) + ‘/;ge(r) ) (451)

with Voge(r) and Ve, s(r) given in (4.2) and (4.3), respectively.

The Regge structure of this model was investigated in [54], where it was
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Figure 4.13: DESC Voloshin sum rule calculation of A (full line). The expected
upper bound of 0.5 is shown with the dotted line, while the 5% relaxed bound
of 0.525 is shown with the dashed line. These results are for B — D, D*
semileptonic decays.

found that

1
e = — . 4.52
Oy, % ( 5)

Even though DESC yields the same slope as SVSC, the two models are quali-
tatively different. In the case of SVSC the Regge slope was due to the vector
part of the potential, and it is only because we used an equal mixture of scalar
and vector confinement that we find the same slope for DESC and SVSC.

Same as before, (4.52) implies
b=0.284 GeV?. (4.53)

We now turn to the sum rule part of the model analysis. Unlike in the

previous models which we considered, confining part of the potential here
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Figure 4.14: Convergence of the DESC Voloshin sum rule evaluation of A for
B — D, D* semileptonic decays. Plotted with full lines are calculations done
with 1, 5, 10, and with 15 lowest P-wave states. The expected upper bound of
0.5, and the 5% relaxed bound of 0.525 are shown with the dotted and dashed
line, respectively.

effectively just changes the constituent light quark mass. Therefore, with m,, 4
fixed, for each value of ¢ one has to perform a separate fit to the observed heavy-
light meson states in order to determine the other parameters of the model,
and then use those parameters to calculate —&;(1) and A from the Bjorken
and Voloshin sum rules. Our results for the semileptonic B — D, D* decays,
obtained with the 15 lowest P-wave states and with m,, 4 fixed to 300 MeV,
are shown in Figures 4.12 (Bjorken sum rule) and 4.13 (Voloshin sum rule). As
one can see, DESC satisfies both sum rules for any value of ¢ > —300 MeV (or

constituent light quark mass m, 4 > 0). We also investigated convergence of

the DESC sum rule calculations with respect to an increase in the number of
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P-wave resonances included. The results for the Voloshin sum rule, obtained
with 1, 5, 10 and 15 lowest P-wave doublets (i.e., 15 E, E* and 15 F, F** states),
are shown in Figure 4.14.
Choosing ¢ = 0, we have
Myqa = 0.300 GeV
m, = 0.465 GeV ,
m. = 1357 GeV ,
m, = 4.693 GeV , (4.54)
as = 0462,
b = 0.284 GeV? |
c = 0.
The above parameters yield the S-wave LDF energy of 620 MeV and —&((1) ~
0.86, and will be used for the calculation of the semileptonic B decays in
Chapter 5. Model predictions for the spin-averaged heavy-light masses are

given in Table 4.5. To make an easier comparison between different models

investigated in this chapter, we summarized their parameters in Table 4.6.

4.8 Conclusion

In this chapter we have investigated several hadronic models in the heavy quark
limit. For each model we have fixed the effective slope of the linear potential
b by comparing the model prediction for the Regge slope to experiment. In
order to constrain the constant c¢ of the confining part of the potential, we have
used the HQET sum rules. Other parameters of the model were determined

from the spin-averaged heavy-light meson spectrum.



85

Table 4.5: SEVC, SFTM, SVSC and DESC results for the spin-averaged
heavy-light meson masses. Parameters for different models are given in (4.36),
(4.45), (4.50), and in (4.54) for SEVC, SFTM, SVSC, and DESC, respectively.

Errors for all models are shown in brackets.

Meson State  Mass SEVC SFTM SVSC DESC

[MeV]  [MeV]  [MeV]  [MeV]  [MeV]
-

D(1867) 0y, 1974  1979(+5) 1980(+6) 1980(+6) 1977(+3)
D*(2009) 1;,
1+

D1(2425) 13 2446  2441(—5) 2440(—6) 2440(—6) 2444(—2)
D;3(2459) 23,
o

D,(1969) 0y 2076 2072(—4) 2072(—4) 2072(—4) 2074(-2)
D:(2112) 17,
1+

Da(2535) Lsz2 U 9559 9563(+4) 2563(+4) 2563(+4) 2560(-+1)
D3,(2573) 23,
0

BG2O) O U 551y s315(41) 5315(41) 5315(+1)  5313(—1)
B*(5325) 17,
o

By(5374) 0y 5409  5408(—1) 5408(—1) 5408(—1) 5410(+1)
B:(5421) 17,
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Table 4.6: Parameters of the six hadronic models which will be used for cal-
culation of semileptonic B decays in Chapter 5.

Model  myq ™y My me Qg b c
[GeV] [GeV] [GeV] [GeV] [GeV?] [GeV]
SSEQ  0.350 0.542 1.696 5.033 0.390 0.142 —0.330
RFTM 0.300 0.507 1.532 4.868 0.390 0.181 —0.200
SEVC  0.350 0.620 1.627 4.963 0.527 0.142 —0.240
SFTM 0.350 0.604 1.561 4.897 0.501 0.181 —0.230
SVSC  0.350 0.579 1.549 4.885 0.423 0.284 —0.500
DESC 0.300 0.465 1.357 4.693 0.462 0.284 0

Once again, we emphasize that our goal here was not to show whether a
given model is correct in terms of a particular equation, a type of confinement,
or a specific potential it uses. Instead, our intention was to find several quali-
tatively different hadronic models, which not only yield a good description of
the spin-averaged heavy-light meson states, but are also consistent with exper-
iment in terms of their Regge structure, and self-consistent with respect to the
sum rules of the heavy quark effective theory. These models, with parameters
summarized in Table 4.6, will be used in the next chapter for calculation of

semileptonic B decays into higher charmed resonances.
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Chapter 5

Semileptonic B Decays

5.1 Introduction

Semileptonic B decays represent one of the most important and most reliable
applications of heavy quark effective theory (HQET). In previous chapters we
have emphasized many times the great significance of these decays, especially
their role in determining the CKM matrix element V.

As the number of measured B decays increases, other questions related
to semileptonic B — D** decays can be addressed.! Among these are, for
example, the B — D, D* spectrum shapes, and the ratio of B — D* to
B — D rates. Nevertheless, one of the most pressing questions concerns the
large difference between the experimental result for the inclusive semileptonic
rate, and the sum of the two exclusive elastic rates, B —+ D and B — D*.
Namely, semileptonic decays into hadrons account for over 20% of all B decays.
In the case of B~ meson decaying into electron, neutrino, and all hadrons the

branching ratio is [94]

B(B~ — Xe 7,) = (10.49 4 0.46)% . (5.1)

'We use the symbol D** to denote any charmed meson.
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Slightly less than 70% of the inclusive rate is accounted for by X = D% and

X = D*%. The measured branching ratios for these final states are [52,95]
B(B~ — D% 7)) = (1.9540.55)%, (5.2)
B(B~ — D®e ) = (513+0.84)% . (5.3)

This leaves about 30% of all semileptonic B decays unaccounted for, and is one
of the most important reasons for studying semileptonic B decays into higher
charmed resonances. Interest in these decays also in part stems from the recent
experimental data for the inelastic processes B — D** Xev,, where D** could
be D, or D} (or their radial excitations), and X are any non-charmed hadrons
[96-98].

Important ingredients in understanding semileptonic B — D** decays are
the unknown hadronic form factors, which survive after application of HQET.
In Chapter 3 we have found precise definitions for these form factors (in the
valence quark approximation), which are given in terms of the wave functions
and energies of the light degrees of freedom (LDF) [42]. In Chapter 4 we
used those definitions in the Bjorken [22,23] and Voloshin [24] sum rules, in
order to extract information on several hadronic models in the heavy quark
limit. Here we shall apply those models for the investigation of semileptonic
B decays. The main advantage of using many qualitatively different models
will be the ability to obtain reasonable estimates of model dependence for all
of our results.

Calculations similar to the one presented in this chapter have already ap-

peared in [99,100]. The main difference is that here we use models which not



89

only yield a good description of the spin-averaged heavy-light spectrum, but

are also self-consistent with respect to the HQET sum rules.

5.2 Decays B — D*er, in the Heavy Quark
Limit
Assuming that lepton masses are zero, momentum transfer for B — D**er,
decays is given by
¢ = (mpv—mp-v')? = (p1 +py)*
= my+mh. — 2mpMp-w . (5.4)

In the above v* and v"* are the four-velocities of B and D** mesons, respec-

tively, and w = v - v'. Using (5.4), and denoting
xr = (pl -+ mD**UI)2 = (mBU — p2)2 , (55)

the standard expression [31] for the width of the semileptonic decay of a B

meson into any of the charmed meson states D** can be written as

F *ok T
ar _ e [ el (5.6)

dw  12873m3%

In (5.6) kinematical limits of integration are
Ty =mpmpe(w+ Vw? —1) . (5.7)

The invariant amplitude,

GrVa

M="7

ey (1= 7°)up (D™ (v', &) [, (1 — v°)b| B(v)) (5.8)
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after squaring and summing over e and 7, spins, and also over D** polarization,
yields

. | ,

M2 = 5G%|Vcb|2L,wH“ : (5.9)

In (5.9) we defined leptonic and hadronic tensors as
L' = 8(pipy — ¢"pr- D2+ PIPE + i piapag) (5.10)

H"™ = 3 (D", €)[er" (1 — 7°)b|B(v))

5’

x (D™, €)]er (1 — 7B B))! . (5.11)

We can calculate matrix elements needed in H* from (2.41), using states
given in (2.40), while the sum over D** polarization states can be performed
using expressions (2.46) and (2.47) for spin one and spin two particles, re-
spectively. With the help of kinematical identities which can be derived from

definitions (5.4) and (5.5), and also from momentum conservation, we can ex-

press |M|? in terms of w and z. Performing a simple integration in (5.6), we

find

dar= G2 |chb|2 Kk Kk *%
= Z87T3 MmEm3eVw? — 16 (W) 2 £ (w, ™), (5.12)

where r** = mp« /mpg, and the function f** is given by

felw,r) = (W =1)(1+7)*, (5.13)
forlw,r) = (W+1) [(w+ 1)1 =) + 4w — 2wr +17)] | (5.14)
felw,r) = (W —1)(1—1)%, (5.15)

for(w,r) = (w=1)[(w= 1)1 +7)’+4w(l - 2wr +77)] (5.16)
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Figure 5.1: Form factor £¢ for C — C,C* transitions (B decays), obtained
with DESC (full line) and SSEQ (dashed line). Kinematical limits for C' — C
transitions is w ~ 1.59, while for C' — C* transitions it is w ~ 1.50.

Folwr) = ;(w—l)(w+1)2 (W= 1)+ 0 —2wr+57)] | (517)

fre(w,r) = 2w —1)(w+ 1) [(w+1)(1 = 1)+ 30(l - 2wr +73)] , (5.18)

3

2
felw,r) = g(w —1)*(w+1) [(w + 1)1 =7)* 4+ w(l —2wr+ ?“2)] , (5.19)

2
for(w,r) = S(w— D2(w+1) [(w= 1)1 +7)*+3w(l - 2wr +12)| . (5.20)
Here we used notation from previous chapters, i.e., C,C*, ... denote D, D*, ...

mesons. These expressions can be found in [36,45,50,99]. In the following
section we present our results for semileptonic B — D** decays, obtained with

six different hadronic models investigated in Chapter 4.
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5.3 IW Form Factors, Branching Ratios and
Comparison with Literature

We first show several results for the form factors and corresponding differential
branching ratios. The elastic form factor £ and differential branching ratios
dB/dw for C — C,C* decays, obtained with DESC and SSEQ), are shown in
Figures 5.1 and 5.2, respectively. We have chosen DESC and SSEQ because
&c obtained from these two models yields the smallest (DESC) and the largest
(SSEQ) C — C and C' — C* branching ratios. It is interesting to compare

the zero-recoil point slope £ (1) obtained from different models:

’

0.59 (SSEQ)

0.70 (RFTM)

, 0.71 (SEVC)
—&h(1) =4 . (5.21)

0.77 (SFTM)

0.78 (SVSC)

| 086 (DESC)

Note that the experimental result is [52]
—£,(1) = 0.84£0.14 . (5.22)

Form factor éc would be the Isgur-Wise function - in the absence of the
symmetry breaking corrections.

Inelastic form factors £ and &r (which describe S to P-wave semileptonic
B decays), and corresponding differential branching ratios are shown in Fig-

ures 5.3 through 5.6. For C — E, E* transitions (Figures 5.3 and 5.4) the
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Figure 5.2: Differential branching ratios & for C — C (1) and C — C* (2)
transitions (B decays), obtained with DESC (full lines) and SSEQ (dashed
lines). Kinematical limits for C' — C transitions is w ~ 1.59, while for C' — C*
transitions it is w ~ 1.50.

smallest branching ratios are obtained with SEVC, while the largest ones are
found with RFTM. Note that £z obtained from these two models differ consid-
erably (Figure 5.3), which is not the case for £¢ (Figure 5.1), where all models
give similar results. Results for £ and dBB/dw (corresponding to C' — F, F*
transitions and obtained with SSEQ and DESC) are shown in Figures 5.5 and
5.6, respectively.

Our results for branching ratios obtained from the six different models
discussed in Chapter 4 are shown in Tables 5.1, 5.2 and 5.3. We have assumed

V. = 0.040 and 75 = 1.5ps.2 Table 5.4 contains a comparison of our results

2Experimental result is V,; = (37.74+£2.04£2.1+£1.2) x 1073 [52], while Neubert’s analysis
based on heavy quark symmetry yields V; = 0.040 £ 0.003 [36].
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Figure 5.3: Form factor (g for C — E, E* transitions (B decays), obtained
with SEVC (full line) and RFTM (dashed line). For both C — F and C — E*
transitions kinematical limits are w ~ 1.40 (SEVC) and w ~ 1.32 (RFTM).

with calculation of Suzuki et al. (SISM model) [50], the one of Scora and
Isgur (ISGW2 model) [101], with the QCD sum rule approach of Colangelo
et al. (CNP model) [102], and with the model of Sutherland et al. (SHJL
model) [103]. It is worth noting that results quoted for SISM and CNP are
also obtained in the heavy quark limit.®> Table 5.5 contains our ratios of
partial widths for B decays into members of the same D** doublet, such as
B(C — C)/B(C — C*), B(C — E)/B(C — E*), etc. The same ratios, but
obtained in SISM, ISGW2, CNP, and SHJL models, are shown in Table 5.6.

For the calculation of branching ratios we used experimental meson masses

3Note that the calculation of [50] used form factor definitions which are not consistent
with the covariant trace formalism.
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Figure 5.4: Differential branching ratios 48 for C — E (1) and C — E* (2)
transitions (B decays), obtained with SEVC (full lines) and RFTM (dashed
lines). For both C — E and C — E* transitions kinematical limits are
w ~1.40 (SEVC) and w ~ 1.32 (RFTM).

wherever possible. In those cases the only model dependent inputs were the
appropriate IW form factors. For decays where the D** mass is unknown, we
have used spin-averaged masses obtained in a specific model, which are also
shown in Tables 5.1 through 5.3. Based on the available information on the
splitting between D and D* (or D; and Dj), one could estimate mass splitting
in other excited doublets, and use that together with model dependent spin-
averaged mass to obtain separate predictions for the masses of each member
of that doublet. Meson masses obtained in this way could then be used in

the calculation of the branching ratio for the corresponding decay. However,

we have found that this procedure does not significantly affect results. For
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Figure 5.5: Form factor &z for C — F, F* transitions (B decays), obtained
with SSEQ (full line) and DESC (dashed line). Kinematical limits for C' — F
transitions is w ~ 1.32 and for C' — F* transitions it is w ~ 1.31.

example, using a spin-averaged mass of 1974 MeV for D(1867) and D*(2009),
instead of their experimental masses, in the case of DESC yields branching
ratios of 2.24% and 6.77% instead of 2.40% and 6.62%, which are given in
Table 5.3. For higher states this effect is even less noticeable.

Let us first discuss B — D and B — D* transitions. Recent results from
CLEO [52,95], given in (5.2) and (5.3), and results given in Tables 5.1 through
5.4, imply that all models we used, as well as the ISGW2 and SHJL. models,
require a V, slightly lower than 0.040. In our models values range from about
0.033 for SSEQ and 0.034 for RFTM and SEVC, to about 0.035 for SF'TM
and SVSC and 0.036 for DESC. On the other hand, ISGW2 is consistent with
0.035, SHJL gives about 0.036, and SISM and CNP models agree with V,, of
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Figure 5.6: Differential branching ratios 9 for C — F (1) and C — F* (2)
transitions (B decays), obtained with SSEQ (full lines) and DESC (dashed
lines). Kinematical limits for C — F' transitions is w ~ 1.32, and for C — F*
transitions it is w ~ 1.31.

about 0.041. The experimental result is [52]
Vi = 0.0377 £ 0.0031 . (5.23)

From Table 5.6 it can also be found that

0.34  (SISM)
. 0.48 (ISGW2
B(B —» D*el/f) _ ( ) _ (5.24)
B(B — Dreve) | o33 (CNP)
0.31 (SHJL)

For the same ratio our calculations with six different models (see Table 5.5)

yield results in the range from 0.36 to 0.38. The results quoted in (5.2) and
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(5.3) imply an experimental ratio of

B(B — Der,)
B(B — D*er,)

=0.38+0.17. (5.25)

Note that ratio of polarization states of D and D* is 0.33.

Individual contributions of P-wave j = 3/2 states to the total semileptonic
decay rate is another interesting point. From Table 5.1 it can be seen that
the total semileptonic branching ratio for B — D; and B — Dj in the two

spinless models is expected to be

B(B — Diev,) + B(B — Djer,.) =

] 0.33Vis/0.040[ (73/1.50p5)%  (SSEQ) (5.26)
0.47 Vi /0.0402 (15/1.50ps)% (RFTM)

Models based on the Salpeter (or Dirac) equation give slightly larger results
(see Tables 5.2 and 5.3), i.e.,

B(B — Diev,) + B(B — Djer,) =

[ 0.521,,/0.0401 (7 /1.50p5)% (SEVC)
) 0.60|V,,/0.040[* (75/1.50ps)%  (SFTM) 5

0.66 |V,,/0.040[* (75/1.50ps)%  (SVSC)

\ 0.69 |V,5/0.040|* (75/1.50ps)% (DESC)

These results are in general larger than the SISM and CNP results of 0.20 and
0.37 [V./0.040|* (75/1.50ps) %, and are comparable to the SHJL and ISGW?2
models, which give 0.46 and 0.65 |V,;/0.040| (75/1.50ps)%, respectively. How-
ever, as one can see from Tables 5.5 and 5.6, our ratios of these two P-wave

decays are qualitatively different from the ones obtained in ISGW2 and SHJL,
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Table 5.1: Exclusive partial widths for decays B — D**ei, obtained
from SSEQ and RFTM. For the observed mesons we used experimental
masses, otherwise we used model predictions for the spin-averaged me-
son masses. All masses are given in MeV. I is given in units of
[(Vs/0.040)210-°GeV], Bis in units of [[V./0.040]” (75/1.50ps)%], while the
ratio R = B(B — D**er,)/B(b — cel,) is given in [%]|. Numerical values of
B(b — cev,) for a particular model can be found in (5.35).

State SSEQ RFTM
D** JJP Mass r B R | Mass r B R
C 01_/2 1867 12.62 2.876 24.32 | 1867 11.76 2.681 24.13
C* 1y, | 2009 3278 7.470 63.15| 2009 31.25 7.121 64.10
E O]L/Q 2416  0.326 0.074 0.629 | 2413 0.457 0.104 0.938
E* 1]?2 2416 0.448 0.102 0.863 | 2413 0.631 0.144 1.294
F 1;'/2 2425 0.568 0.129 1.094 | 2425 0.788 0.180 1.617
F* 2;/2 2459 0.891 0.203 1.716 | 2459 1.252 0.285 2.568
G lg/Q 2673 0.028 0.006 0.053 | 2681 0.047 0.011 0.096
G* 23, | 2673 0.028 0.007 0.055| 2681 0.048 0.011 0.098
Cy 0y | 2436 0.040 0.009 0.077 | 2494 0.079 0.018 0.162
C3 1y, | 2436 0.077 0.018 0.148 | 2494 0.154 0.035 0.317
E, 0;’/2 2750  0.010 0.002 0.020 | 2819 0.012 0.003 0.024
E; 1;“/2 2750 0.013 0.003 0.026 | 2819 0.015 0.003 0.030
F 1§L/2 2750 0.019 0.004 0.036 | 2819 0.021 0.005 0.043
Fy 2§L/2 2750 0.029 0.007 0.055 | 2819 0.031 0.007 0.064
total 47.88 10.91 92.24 46.55 10.61 95.48
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Table 5.2: Exclusive partial widths for decays B — D**ei, obtained
from SEVC and SFTM. For the observed mesons we used experimental
masses, otherwise we used model predictions for the spin-averaged me-
son masses. All masses are given in MeV. I is given in units of
[(Vs/0.040)210-°GeV], Bis in units of [[V./0.040]” (75/1.50ps)%], while the
ratio R = B(B — D**er,)/B(b — cel,) is given in [%]|. Numerical values of
B(b — cev,) for a particular model can be found in (5.35).

State SEVC SFTM
D** JJP Mass r B R | Mass r B R
¢ 0y, | 1867 11.79 2687 23.33 | 1867 11.30 2.575 22.93
C* 1y, | 2009 3129 7.132 61.92| 2009 30.41 6.930 61.72
E Of'/2 2216 0.143 0.033 0.282 | 2254 0.162 0.037 0.329
E* 1]?2 2216  0.199 0.045 0.393 | 2254 0.226 0.052 0.459
F 1;'/2 2425 0.882 0.201 1.746 | 2425 1.010 0.230 2.050
F~ 2;/2 2459 1408 0.321 2.787 | 2459 1.621 0.369 3.289
G lg/Q 2569 0.009 0.002 0.017 | 2609 0.010 0.002 0.021
G* 23, | 2569 0.009 0.002 0.018 | 2609 0.011 0.002 0.021
Cy 0y | 2437 0.075 0.017 0.149 | 2506 0.093 0.021 0.189
C3 1, | 2437 0.148 0.034 0.293 | 2506 0.184 0.042 0.373
E, 0;’/2 2608 0.004 0.001 0.008 | 2697 0.004 0.001 0.008
E; 1;?2 2608 0.005 0.001 0.010| 2697 0.005 0.001 0.010
F 1§L/2 2763 0.031 0.007 0.061 | 2837 0.025 0.006 0.051
Fy 2§L/2 2763 0.046 0.011 0.092 | 2837 0.037 0.009 0.075
total 46.04 10.49 91.11 45.10 10.28 91.53
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Table 5.3: Exclusive partial widths for decays B — D**ei, obtained
from SVSC and DESC. For the observed mesons we used experimental
masses, otherwise we used model predictions for the spin-averaged me-
son masses. All masses are given in MeV. I is given in units of
[(Vs/0.040)210-°GeV], Bis in units of [[V./0.040]” (75/1.50ps)%], while the
ratio R = B(B — D**er,)/B(b — ce,) is given in [%]|. Numerical values of
B(b — cev,) for a particular model can be found in (5.35).

State SVSC DESC
D** JJP Mass r B R | Mass r B R
C 01_/2 1867 11.14 2.540 22.72 | 1867 10.54 2.401 23.26
C* 1y, | 2009 3014 6.868 61.45| 2009 29.04 6.617 64.11
E O]L/2 2323 0.176 0.040 0.360 | 2421 0.324 0.074 0.715
E* 1]72 2323 0.245 0.056 0.499 | 2421 0.448 0.102 0.989
F 1;'/2 2425 1.105 0.252 2.254 | 2425 1.162 0.265 2.565
F~ 2;/2 2425 1.766 0.403 3.601 | 2459 1.855 0.423 4.095
G 13, | 2684 0.009 0.002 0.018 | 2763 0.023 0.005 0.050
G* 23, | 2684 0.009 0.002 0.019| 2763 0.023 0.005 0.052
Cy 0y | 2545 0.080 0.018 0.163 | 2589 0.067 0.015 0.149
C3 1y, | 2545 0.158 0.036 0.321 | 2589 0.132 0.030 0.291
E, 0;’/2 2780 0.007 0.002 0.015| 2858 0.001 0.000 0.003
E; 1;?2 2780 0.009 0.002 0.019 | 2858 0.002 0.000 0.003
F 1§L/2 2857 0.018 0.004 0.036 | 2896 0.029 0.007 0.063
Fy 2§L/2 2857 0.026 0.006 0.053 | 2896 0.045 0.010 0.099
total 44.89 10.23 91.53 43.69 9.95 96.44
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Table 5.4: Branching ratios (B) for B — D**ep, decays obtained by SISM
[50], ISGW2 [101], CNP [102], and SHJL [103] models. All results are given
in units of [|Vd,/0.040\2 (TB/1.50p8)%]. Results for Ey, E5 and Fy, Fiy doublets
were not given in any of those papers. Our results with models based on the
Salpeter (or Dirac) equation, and the ones including all models, are given in
the last two columns.

D* | SISM | ISGW2 | CNP | SHIL | Salpeter/Dirac | All Models
Models

C 1.778 | 2.860 | 1.736 | 2.160 || 2.401 - 2.687 | 2.401 - 2.876
O 5.279 | 5.950 |5.331 | 6.980 || 6.617-7.132 | 6.617 - 7.470
E 0.027 | 0.072 | 0.062 | 0.067 || 0.033 - 0.074 | 0.033 - 0.104
E* 0.035 | 0.072 | 0.087 | 0.096 || 0.045 - 0.102 | 0.045 - 0.144
F 0.083 | 0.432 | 0.124 | 0.281 0.201 - 0.265 | 0.129 - 0.265
F 0.118 | 0.216 | 0.248 | 0.182 || 0.321 - 0.423 | 0.203 - 0.423
G 0.000 - - 0.005 || 0.002 - 0.005 | 0.002-0.011
G* 0.000 - - 0.001 || 0.002 - 0.005 | 0.002-0.011
Cy 0.016 | 0.000 - 0.132 | 0.015-0.021 | 0.009 - 0.021
Cs 0.039 | 0.144 - - 0.030 - 0.042 | 0.018 - 0.042
E, - - - - 0.000 - 0.002 | 0.000 - 0.003
E; - - - - 0.000 - 0.002 | 0.000 - 0.003
F, - - - - 0.004 - 0.007 | 0.004 - 0.007
Fy - - - - 0.006 - 0.011 | 0.006 - 0.011
total | 7.38 9.74 7.59 | 991 9.95 - 10.49 9.95 - 10.91
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Table 5.5: Ratios of partial widths for the B decays into the members of the
same D** doublet obtained using six different hadronic models discussed in
the previous chapter.

Doublet | SSEQ | RFTM | SEVC | SFTM | SVSC | DESC
c/c* | 038 | 038 | 0.38 | 0.37 | 0.37 | 0.36
E/E* | 073 | 072 | 072 | 0.72 | 072 | 0.72
F/F* | 064 | 063 | 063 | 062 | 063 | 0.63
G/G* | 097 | 097 | 097 | 097 | 097 | 0.97
C,/Cy | 052 | 051 | 051 | 051 | 051 | 0.51
Ey/E; | 078 | 079 | 0.80 | 0.80 | 0.78 | 0.84
Fy/F; | 065 | 067 | 067 | 0.68 | 0.68 | 0.64

and agree with SISM and CNP models. We find that B(B — Dsev,)/B(B —

Djerp,) ranges from 0.62 to 0.64, while the other models yield

(

0.70 (SISM)
% 2.00 (ISGW2
B(B — Diege) .y ( ) ‘ (5.28)
B(B — D2€1/e) 0.50 (C )
1.54 (SHJL)

Note that the ratio of number of polarization states of D; and D3 is 0.6.
It remains to be seen whether this discrepancy between our results (which
are obtained in the heavy-light limit) and ISGW2 and SHJL* models can be
explained with large 1/m, effects [104].

The last issue that we want to consider in this section is the question

whether in any of the models we considered, semileptonic B decays into higher

“In [103] one can also find results obtained in the heavy quark limit. These are in general
much smaller than our results, but the ratios of partial widths for the B decays into the
members of the same D** doublet agree much better with our predictions.
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Table 5.6: Ratios of partial widths for the B decays into the members of the
same D** doublet obtained by SISM [50], ISGW2 [101], CNP [102], and SHJL
[103] models. Results for E,, E5 and Fy, Fy doublets were not given in any of
those papers. In the last column we show our results which include all models.

Doublet | SISM | ISGW2 | CNP | SHJL | This Work
c/C* 0.34 0.48 0.33 | 0.31 | 0.36 - 0.38
E/E* 0.76 1.00 0.71 | 0.70 | 0.72-0.73
F/F* 0.70 2.00 0.50 | 1.54 | 0.62-0.64

G/G* | 0.98 - - | 7.00 0.97

Co/Cy | 0.41 | 0.00 - - | 051-0.52
EyJES | - . - - | 078-084
RB/F | - - - - | 0.64-0.68

charmed resonances can saturate the inclusive semileptonic rate. Of course, at
the same time model results for B — D and B — D* decays should agree with
experiment. To answer this question we rescale our results, given in Tables 5.1
through 5.3, by changing V,, in such a way that rates for B — D and B — D*
decays are consistent with experimental numbers, i.e., with the central values
of (5.2) and (5.3). Then for the total resonant contribution to the inclusive

semileptonic rate we find

f

7.43 [V,/0.033[% (15/1.50ps)%  (SSEQ)
7.67|V./0.034] (15/1.50ps)% (RFTM)
S B(B - D*er) = | 7.58 |V/0.034] (15/1.50ps)%  (SEVC) (5.29
D 7.87 [V/0.035]% (15/1.50ps)%  (SFTM)
7.83|V,4/0.035) (15/1.50ps)%  (SVSC)
\ 8.06 |V,/0.036]° (15/1.50ps)% (DESC)
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Similarly, rescaling results obtained in other models (Table 5.4), we obtain

7.75 |V /0.041 (15/1.50ps)%  (SISM)
7.46 [V/0.035% (15/1.50ps)%  (ISGW2
ZB(B — D*ep,) = 4 Van/ " (78/1.50ps)%  ( ) . (5.30)
D+ 7.97|V,,/0.0417 (15/1.50ps)%  (CNP)
8.03|V,,/0.036|° (15/1.50ps)%  (SHJL)

Recalling that the experimental inclusive semileptonic rate is (10.49 + 0.46)%
[94], it seems that more than 20% of all semileptonic B decays cannot be
accounted for with decays into charmed resonances, no matter which model one
uses. One may seek the possible explanation of the difference between theory
and experiment in the continuum contributions to the inclusive semileptonic
rate.® In fact, the most recent measurement of Vy; from B® — D* eTv, decays
by DELPHI [105] supports that conclusion.® This measurement determined

the ratio of the branching fractions

B(B* - DIty X)

=0.19+0.12 5.31
B(Bt = D= I*,X) + B(B" = D*l*y,) ’ (5:31)

and also the total branching ratio for B® — D*~ Ity decays,
B(B® — D*"Ity) = (5.47 £ 0.69)% . (5.32)

In the above, X represents the additional non-charmed hadrons, such as 7.
Even though the errors given in (5.31) are large, the central value of 0.19, which

corresponds to the branching fraction for BT — D*~[t1, X decays of about

5By continuum contributions we mean decays which also involve other non-charmed
particles.

6In [105] it was found Vi = (38.5 £2.1 £2.5+1.7) x 1073.
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1.2%, suggests that the non-resonant contributions to the inclusive semilep-
tonic B rate may be large, and that decays involving additional pions could
account for the missing semileptonic B decays. If this turns out to be true,
then there is no disagreement between theory and experiment. If, on the
other hand, the non-resonant contributions to the inclusive semileptonic rate
turn out to be small, then it remains an open question whether inconsistency
between theoretical predictions and measurement can be explained with inad-
equacy of hadronic models we used here (or the ones that can be found in the
literature).

As already mentioned, within the HQET framework the only model de-
pendent input for the decays C — C,C* and C — F, F* are the unknown
IW functions. For these decays the relative uncertainty introduced by using a
particular model should be smaller than for the decays where D** mass is not
known, and we had to use model predictions. From the last two columns of
Table 5.4 one can see that this is indeed the case. Nevertheless, all results ob-
tained from the six hadronic models are comparable. The uncertainty by using
a specific model is even smaller if only models with spin are considered.” Also
note that ratios of the two exclusive decay widths for members of the same

doublet are all consistent (Table 5.5), which is a consequence of application of

HQET.

"One of the reasons why spinless models we considered in most cases give either the
smallest or the largest branching ratio for a particular decay, is that these models do not
distinguish between the two different doublets with the same L #0.
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5.4 Fractional Semileptonic Decay Rates

The exclusive decay rates discussed earlier suffer from a variety of theoretical
oversimplifications. Some of the things which were not taken into account
are QCD corrections, spectator effects, and deviations from exact heavy quark
symmetry. In addition, there are several parameters which need to be specified
before definite predictions can be made. Among these are the CKM parameter
Ve, the b-quark lifetime, and the quark masses.

Many of the above problems can be reduced by considering fractions of
the inclusive b — cer, rate. In particular, V., exactly cancels. Also, since the
sum of the exclusive rates equals the inclusive rate, and since the inclusive
calculation is structurally similar to the exclusive ones, there should be some
cancellation of the QCD, spectator corrections, and heavy quark mass depen-
dence. Since the inclusive rate has been measured, one can directly compare
these fractional predictions with experiment in several cases.

The inclusive spectator model decay rate for b — cew, is [106-108]

2 511712 2
w[(ﬁg’o’o) , (5.33)

P = cere) = —Hgom 103

where

I(2,0,0) = (1 —2*)(1 — 8z + 2*) — 122%Inx . (5.34)

If for the moment we ignore the oversimplifications of the above inclusive
model and assume V,, = 0.040, the b-quark lifetime of 7, = 1.5 x 10725, and

the quark masses of the six models from Chapter 4, we find the total branching
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ratios
11.83 |V,5/0.040]° (15/1.50ps)% (SSEQ)
11.11 |V,4/0.040[? (15/1.50ps)% (RFTM)
11.52|V,4/0.040[* (15/1.50ps)% (SEVC
B(b — ce,) = 4 Vea/ 0.0401 (75/1.50ps) % (SEVC) (5.35)
11.23 [V,/0.040[* (15/1.50ps)% (SFTM)
11.18 |V,,/0.040[* (15/1.50ps)% (SVSC)
10.32|V,,/0.040[* (15/1.50ps)% (DESC)

The above numbers are in general (except for DESC) slightly larger than the
experimental branching ratio of (10.49 + 0.46)% [94]. However, one should
keep in mind that the predicted value is very sensitive to the choice of V,,, 7,
and quark masses.

One plausibly assumes that ratio of the exclusive branching ratios to the

inclusive one,
B(B — D**er,)

k= B(b — ceve)

(5.36)

will be more accurate than either of these separately. We first apply this
idea to B — D and B — D* decays. From (5.1), (5.2) and (5.3) we find

experimental fractions,

Rp = 0.19+0.06, (5.37)

Rp- = 0.49+0.10 . (5.38)

From Tables 5.1, 5.2 and 5.3 one can see that our models predict Rp in the
range from 0.23 to 0.24, and Rp- in the range of 0.61 to 0.64. These values

are slightly higher than the measured ones.
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The fraction of semileptonic decay into final states other than D or D* is

by (5.37) and (5.38)

R(D** other than D and D*) = 1— (Rp+ Rp«)

= 0.32+0.16 . (5.39)

Again, from Tables 5.1 through 5.3 we find that our models for this fraction
imply range from 0.12 to 0.15, which is a factor of two smaller than the ex-
perimental number.

It is also interesting to observe that single excited charmed states alone are
nearly consistent with accounting for the entire inclusive semileptonic decay
fraction, regardless of the model we used. As a more direct way of seeing this
note the total fractional percentage in Tables 5.1 through 5.3. The predicted

fraction into all D** states is larger than 90% for all models we considered.

5.5 Conclusion

In this chapter we have investigated semileptonic B decay into higher charmed
mesons. Within a HQET framework we have evaluated branching ratios for
B — D**ev,, where the D** are all S and P-wave mesons, D-wave mesons
with j = 3/2, and some of their radial excitations.

Our numerical calculations are based upon six hadronic models, which not
only yield a good description of the known spin-averaged heavy-light mesons,
but are also self-consistent in terms of the HQET sum rules. This is in fact
the main difference between this calculation and the one presented in [100].

There, SEVC, SFTM and DESC models were also used, although with different
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parameters for SEVC and SFTM.® Because of that, SEVC and SFTM results
obtained here are different than the ones given in [100].° The numbers for
C — C and C — C* transitions we obtained in this work are about 25%
higher than the ones given in [100]. On the other hand, for the inelastic
decays we found branching ratios somewhat smaller than the ones quoted in
[100].

We have also compared our results with experiment and with other calcula-
tions available in the literature. We found significant disagreements with [101]
and [103] in ratios of decay widths for B decays into the members of the same
D** doublet, and our results are in general significantly larger than the ones
obtained in [50] and [102]. If we rescale all our predictions by changing V,, in
such a way that results for C — C and C — C* transitions are brought in
agreement with experiment, we find that more than 20% of all semileptonic B
decays cannot be accounted for with decays into charmed resonances, no mat-
ter which model one uses. It remains an open question whether this difference
between theory and experiment can be explained with the non-resonant con-
tributions to the inclusive semileptonic rate, which is suggested by the recent
experimental data. If this turns out not to be the case, a possible explanation
would be inadequacy of hadronic models we used here (or the ones that can
be found in the literature). Nevertheless, it is also interesting to note that we

find that more than 90% of the inclusive spectator model b — cev, rate can

8In [100] constant ¢ was absorbed into the heavy quark mass for both SEVC and SFTM,
which led to inconsistency of these two models with the Voloshin sum rule.

9Because of the higher accuracy of numerical calculations performed in this work, results
with DESC given here may also differ slightly (in the last decimal place) from the ones given
in [100].
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be accounted by B meson semileptonic decays into a single excited charmed
resonance.

In this chapter we considered only the helicity averaged decay rates for
semileptonic B decays. However, the same Isgur-Wise form factors calcu-
lated here also appear in the calculation of partial rates into polarized current
components, and in the angular decay distributions [109,110]. These angular
correlation measurements would provide additional information on the decay
dynamics, which would be useful in determining the validity of various theo-

retical models.
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Chapter 6

Radiative Rare B Decays

6.1 Introduction

Flavor changing neutral current transitions involving the B meson provide a
unique opportunity to study the electroweak theory at higher orders. Although
transitions like b — s, b — sete, and b — sg vanish at the tree level, they
can be described by one loop (“penguin”) diagrams, in which a W~ is emitted
and reabsorbed [111-113]. These processes occur at a rate small enough to be
sensitive to physics beyond the Standard Model [114]. Similar flavor violating
processes in the K meson system have the disadvantage that nonperturbative
long distance effects are quite large, and it is difficult to extract the quark
level physics from the well-known processes like Kt — 7tete™.

Among all rare B decays, radiative processes B — X, (especially decay
B — K*(892)7) have received an increasing attention, because of the experi-

mental measurement, of the B — K*(892)~ exclusive branching ratio [115],
B(B — K*(892)7) = (4.5 + 1.5+ 0.9) x 1075, (6.1)
which has been recently updated [116] to

B(B — K*(892)7) = (4.3713 £0.6) x 1077 | (6.2)
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and also of the inclusive rate [117],
B(B = X,v) = (2.32 4 0.574+0.35) x 107" . (6.3)

Several methods have been employed to predict exclusive B — K*(892)y
decay rate: HQET [47,118], QCD sum rules [119-124], quark models [125-135],
bound state resonances [136], and Lattice QCD [137-140]. The theoretical
uncertainty, which was originally of two orders of magnitude, has been greatly
reduced in the more recent studies. However, there is still a large spread
between different results.

In this chapter we reexamine contributions of higher K resonances' to the
radiative rare decays b — sy in the limit where both b and s quark are con-
sidered heavy [58]. Even though there is no doubt that s quark is not heavy
in the sense that its mass is much larger than Agcp, it is still heavier than
u and d quarks. Considering K** resonances as heavy-light mesons consider-
ably simplifies the analysis of the radiative rare B decays, and is useful for
organizing phenomenology.

In Chapter 3 we showed that form factor definitions used in [47] are in-
consistent with the covariant trace formalism [16,32-34]. Because of that,
our results, which are obtained with form factors given in Chapter 3, are in
significant disagreement with those of Ali et al. [47], and in excellent agree-
ment with experimental results. In order to clearly identify the differences
implied by correct form factor definitions, we have also used nonrelativistic
quark model for the wave functions of the light degrees of freedom. Our re-

sults show that the ratio of the exclusive B — K** to the inclusive decay rate

LGeneric K resonance is denoted as K**.
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B — X,y was underestimated for the channel B — K*(892)y ((16.8 +6.4)%
as opposed to (3.5-12.2)% from [47]), and significantly overestimated for the
decay B — K;(1430)y ((6.2 & 2.9)% as opposed to (17.3-37.1)% from [47]).
We emphasize that our prediction for the decay B — K*(892)+ is in agreement
with experimental result of (19 £ 5)%. Although other exclusive decays have
not yet been identified, we have compared with experiment the contribution

from the eight B — K**7 decays to the inclusive B — X,y mass distribution.

6.2 Theory of B - K**v Decays

The effective Hamiltonian for the decays B — X,7 can be found in many
places, e.g., [141-143]. It is derived by integrating out the top quark and W
boson at the same scale y ~ My,. An appropriate operator basis for the effec-
tive Hamiltonian consists of four-quark operators and the magnetic moment
type operators of dimension six (O;-Og). Higher dimensional operators are
suppressed by powers of the masses of the heavy particles. For the B — K™y

decays only the operator O; contributes, so that

4G
Hegg = = ViV iCrlms) Or(ms) (6.4)

Here, Oy is given by

€

Or = ——
7 3972

Fo[mpsa™ (1 4 v5)b 4+ mssa*” (1 — 75)b] (6.5)

with o = L[y#,+"]. The explicit expression for the Wilson coefficient C7(my)
as a function of m?/M3, can be found in [143,144]. The value of C7 can be

calculated perturbatively at the mass scale 4 = My,. The evolution from
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My, down to a mass scale u = m,; introduces large QCD corrections. This
procedure also introduces large theoretical uncertainties, primarily due to the
choice of the renormalization scale p (taken above as mjy), which can be as
large as 25% [143].

As proposed in [47], we evaluate the hadronic matrix element of O; between
a B meson in the initial state, and a generic K** meson in the final state, in
the heavy quark limit for the b and s quarks. In Chapter 3 we have seen that
matrix elements of bilinear currents of two heavy quarks can be conveniently
calculated by taking traces of matrices describing meson states. Using (2.41),
we can write

(K™ (0", &) O2(m) [ B(v)) = ——1,q, Te[M' (v/, ") M (0)|My(w) , (6.6)

1672
where the factor ¢, = mpv, — mg«v!, came from the derivative in the field
strength F),, of (6.5). Matrices M’ and M are given in (2.40), function M, is

defined in (2.42), n, is the photon polarization vector, and
QY =mpo™ (1 + ;) + mgw—o" (1 — ) . (6.7)

Expression (6.6) can be further simplified using ¥ M (v,e) = M(v,¢).
Now, using the mass shell condition of the photon (¢? = 0), and polariza-
tion sums for spin one and spin two particles given in (2.46) and (2.47), we

obtain the following decay rates [47]:
['(B — K7(892)y) = Qlﬁc(w)|2%[(1 =)L +r)(1+1r7)], (6.8)
['(B — Ki(1270)y) = Q‘fE(w)F%[(l =)L+ (L +r7)], (6.9)

['(B — K,(1400)y) = Q|£F(w)|2$[(1 7)1 +r)"(1+7%)], (6.10)
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DB K3(1430)) = QUer(@)g 510 -r" A+ 1+, (6.11)

(B — K*(1680)y) = Q\ﬁG(w)Firg[(l—r)7(1+7")5(1+7‘2)], (6.12)

['(B — K,(1580)y) = Q|§G(w)|2i[(1 - (1+7r)°1+7rY], (6.13)

8r3
I'(B — K*(1410)y) = Q\S@(w)IZ%[G =)’ +7)P(1+r7)], (6.14)
['(B — K.(1650)y) = Q[¢g, (w)\Q%[(l —r)’(1+r)3(1+7Y)]. (6.15)

In the above we used abbreviations

T o«

r= (6.16)
a
Q = GEmV Vi I Crm) (6.7

The argument of the IW functions is fixed by the mass shell condition of the
photon (¢* = 0),

1+ r?
o

w (6.18)

Note that in the expressions for the decay rates (6.8)-(6.15) given in [47], a
factor of (1 — r?) was omitted. Also, as observed in [47], since decays into
the states belonging to the same spin symmetry doublet are described by the
same IW function, and since in the heavy quark limit the two members of a
spin doublet are degenerate in mass, from (6.10) and (6.11), and from (6.12)
and (6.13), one has

I'(B — K;(1430)7) ~ 3I(B — K(1400)) , (6.19)

I'(B — K5(1580)7) ~ 3['(B — K(1680)7) . (6.20)
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These relations are only approximate due to a large breaking of the spin sym-

metry for the s quark.

6.3 Model for the IW Functions

Even though we also use nonrelativistic quark model for numerical estimates,
our calculation differs significantly from [47] in evaluation of the IW form
factors needed for the decay rates. In Chapter 3 we have found that correct
form factor definitions should include a Lorentz invariant factor in front of the
overlap of the two wave functions describing the initial and the final states of
the LDF. Relevant expressions for the IW functions are given in (3.37), (3.40),
(3.43), and (3.46).

Nonrelativistic quark model for calculations of the unknown form factors
was advocated in [17] within the ISGW model. It is basically the Schrodinger
equation with

4 oy

Vi(r) = —3, 1 br+c. (6.21)

With a sensible choice of parameters, this simple model gives reasonable spin-
averaged spectra of bd and sd mesons up to L = 2. However, instead of just
using a single harmonic oscillator wave function for the radial wave function of
the LDF (as was done in [47]), we numerically solve the Schrédinger equation.
To determine the parameters of the model, we fix b = 0.18 GeV? (which
was also used in [17]), and vary «;s and c for a given value of m, 4 (in the
range 0.30-0.35 GeV'), and m; (in the range 0.5-0.6 GeV'), until a reasonably

good description of the spin-averaged spectra of K meson states is obtained.
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Following this procedure, we find that «; ranges from 0.37 to 0.48, while ¢
takes values from —0.83 GeV to —0.90 GeV. These parameters are in good
agreement with the original ISGW values [17] (as = 0.50 and ¢ = —0.84 GeV
for my 4 = 0.33 GeV and m, = 0.55). We emphasize that the original ISGW
parameters give results that are well inside the ranges quoted here for all
decays. By varying the ¢ and b quark masses we could also obtain good spin-
averaged description of the B and D mesons. However, to be consistent with
heavy quark symmetry, the wave function for the B meson was chosen to be
the same as the one obtained for the spin-averaged (ground state for L = 0)
K and K*(892) mesons.

To completely define our procedure, we have to specify how we determine
the LDF energy E)js in a meson M. In [47] for a given K** meson the LDF
energy was defined as

Egoen = 507 Tmd (6.22)

This definition was proposed to account for the fact that s quark is not par-
ticularly heavy. On the other hand, a definition that is consistent with HQS
is

Eree = mges —my . (6.23)
It should be noted that these two expressions are not equivalent in the heavy
quark limit. In order to explore the sensitivity of our results on the choice of
Ex«, we have repeated all calculations employing both of these two definitions,
and in the final results we have quoted the broadest possible range obtained
for the form factors (and for all other results). The LDF energy for the B

meson has been taken to be the same as the one for the K*(892) meson, which
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is consistent with HQS. It turns out that this is actually a very reasonable
assumption. The range of E), that was used here for B and K*(892) meson
was from 0.296 GeV to 0.396 GeV. On the other hand, from the CLEO data
on semileptonic B decays [52], and the LQCD heavy-light wave function [57],
it was estimated that in B systems FEj; ranges from 0.266 GeV to 0.346 GeV
[56].

We believe that the procedure outlined above enables us to estimate a
reasonable range for the unknown IW form factors in a physically more ac-
ceptable way than it was done in [47], by simply varying the scale parameter

of the single harmonic oscillator wave function.

6.4 Our Results and Comparison with Previ-
ous Investigations

In Table 6.1 we present our results [58] for the range of (absolute) values
of the form factors at the indicated value of w, for the ratio R = I'(B —
K**~)/T'(B — X,v), and for the branching ratio B(B — K**v), for the various
K** mesons. The inclusive branching ratio B — X,v is usually taken to

be QCD improved quark decay rate for b — s7, which can be written as

[141,143,144]
m2 m2
['(B = Xv) =401 — —)3(1 + —2) . 6.24
(B = Xo) = 4001 = T+ 70 (6.24)

The leading log prediction for B(b — s7) is (2.8 +0.8) x 107* [143,144], where
the uncertainty is due to the choice of the QCD scale. The next-to-leading

order terms that have been calculated tend to reduce the prediction to about
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Table 6.1: Results [58] for the range of absolute values of the form factors
at indicated value of w, for the ratio R = I'(B — K**v)/I'(B — X,7), and
for the branching ratio B(B — K**v), for the various K** mesons. For the
calculation of branching ratios we used the value I'(B — X,y) = 2.8 x 1074
[143].

Meson State JI w £ R[%)] B x 10°
K C Uy forbidden

K*(892) C* 11_/2 3.031 0.289+0.057 16.8+6.4 4.71+1.79
K*(1430) E 01/ forbidden

K,(1270) E* 111_/2 2.194 0.277+0.053 43+£1.6 1.20+0.44
K,(1400) F 1;/2 2.016 0.171+0.040 2.1+£0.9 0.58 +0.26
K3(1430) F* 2§, 1987 0175+0.043 62229 1.73=0.80
K*(1680) @G 1;/2 1.702 0.241+£0.035 0.54+0.2 0.15£0.04
K,(1580) G* 23_/2 1.820 0.2034+0.024 1.7+04 0.46 +0.11
K(1460) Cp 07, forbidden

K*(1410) C; 11_/2 2.003 0.175+0.014 4.1+0.6 1.14 +0.18
Kj(1950) B,  0f, forbidden

K,(1650) Ej 1;72 1.756 0.229+0.040 1.74+0.6 0.47=+0.16
total 37.4+13.6 10.44 £ 3.78

1.9 x 107* [138]. Both of these predictions are in excellent agreement with the
recent experimental result of B(b — sv) = (2.32 & 0.57 £ 0.35) x 10~* [117].
For the numerical values of the B — K**7 branching ratios given in Table 6.1
we used the leading log result of B(b — sv) = 2.8 x 1074

In order to make comparison of our calculation with previous investigations
easier, we have tabulated our results together with results of [47] and [127] in

Table 6.2. As far as we know, except for [58] these two papers are the only
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Table 6.2: Our results [58] for the ratios R = I'(B — K**v)/I'(B — X,v),
compared with the previous work done in [47] and [127]. Note that in the quark
model calculations with the L-S coupling scheme, decay into the ! P, state is
forbidden, because Oy is a spin-flip operator, and K;(1270) and K;(1400) are
mixtures of ! P; and ®P; states. In [127] 3P, state had R = 6%.

Meson State  J[ R[%)] R[%)] R[%)]
(This Work [58]) (Ref. [47])  (Ref. [127])

K C Uy forbidden
K*(892) C* 11_/2 16.8 +6.4 3.5-12.2 4.5
K*(1430) E 0/ forbidden
K,(1270) B* 1},  43+16 45-10.1 forbidden/6.0
Ki(1400) F 15, 21409 6.0-13.0 forbidden/6.0
K3(1430) F* 2, 62429  173-3T.1 6.0
K*(1680) G 1,  0.5+02 1.0- 15 0.9
Ky(1580) G 25, L7404 45-6.4 4.4
K(1460) Cp 0y, forbidden
K*(1410) G5 17,  41+06 7.2-10.6 7.3
Kj(1950) E»  0f, forbidden
Ki(1650) E;  1f, 17406 ; ;

total 37.4+13.6 44.1 - 90.9 29.1

ones that have dealt with radiative rare B decays into higher K-resonances.

There has been much more work done on the decay B — K*(892)y. We

have tabulated some of those results in Table 6.3, where one can see that

predictions for this particular ratio range from a 0.7% [133] to 97.0% [125].

The data suggest a value of (19 &+ 5)%. Note that our result of (16.8 £ 6.4)%

is consistent with the data, unlike the values quoted in [47] and [127]. As far

as decays into higher K resonances are concerned, our results are in general in
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Table 6.3: Our result [58] for the ratio R = I'(B — K*v)/I'(B — X,7),
compared with several previous calculations.

Author(s) Reference R[%]
O’Donnell (1986) [125] 97.0
Deshpande et al. (1988) [126] 6.0
Dominguez et al. (1988) [119] 28.0 £ 11.0
Altomari (1988) [127] 45
Deshpande and Trampetié¢ (1989) [130] 6.0 - 14.0
Aliev et al. (1990) [120] 39.0
Ali and Mannel (1991) [118] 28.0 - 40.0
Du and Liu (1992) [131] 69.0
Faustov and Galkin (1992) [132] 6.5
El-Hassan and Riazuddin (1992) [133] 0.7-12.0
O’Donnell and Tung (1993) [128] 10.0
Colangelo et al. (1993) [121] 170+ 5.0
Ali et al. (1993) [47] 3.5-12.2
Ali and Greub (1993) [129] 13.0£ 3.0
Ali et al. (1994) [123] 16.0 = 5.0
Ball (1994) [122] 20.0 + 6.0
Narison (1994) [124] 16.0 = 4.0
Holdom and Sutherland (1994) [134] 17.0+£4.0
Atwood and Soni (1994) [136] 1.6 - 2.5
Bernard et al. (1994) [137] 6.0+ 1.2+3.4
Ciuchini et al. (1994) [138] 23.0+£9.0
Bowler et al. (1994) [139] 9.0+3.0£1.0
Burford et al. (1995) [140] 15.0 - 35.0
Tang et al. (1995) [135] 10.0 - 12.0
Veseli and Olsson (1996) [58] 16.8 £ 6.4




123

much better agreement with [127] than with [47]. In particular, the authors of
[47] emphasized a large branching ratio for the decay B — Kj(1430)~ ((17.3-
37.1)% of the inclusive rate I'(B — X,v)), while our results indicate a 3-6
times smaller value of (6.2 +2.9)%, a result which agrees with the one quoted
in [127] (6.0%). Also note that our numerical results from Table 6.2 support
relations (6.19) and (6.20).

With the exception of the K*(892)y channel, no other exclusive radiative
processes have been identified so far. However, the inclusive radiative B —
X,y mass distribution has been measured by CLEO [117], and is shown in
Figure 6.1. We have normalized experimental data so that the integrated
distribution gives unity. The K*(892) peak is evident, but the higher mass
contribution are not resolved. We have attempted to model this inclusive
distribution by considering the contributions from each of the exclusive K**v
channels considered here (and given in Table 6.2).

In order to compare our results to experiment, we replace a given Ry« by
a mass distribution reflecting the finite total width ['x« of the K** resonance
1),

dR(myx,) Ry [ geen /2

= . 6.25
des % T (me — mK**)Z + (FK**/2)2 ( )

The integrated distribution gives

7dmxs = Z RK** . (626)
K**
The total resonance contribution is shown in Figure 6.1 with the solid line, and
can be compared to the experimental inclusive B — X7 mass distribution.

The area of the resonance curve is 37.4% of the total inclusive rate (see Table
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Figure 6.1: The experimental inclusive B — X,y mass distribution measured
at CLEO [117]. The data have been normalized to unity. The curve [58] is the
sum of the exclusive K**vy channels from Table 6.1 as calculated by (6.25).

6.1 or 6.2). We see that the general shape is correct, but it is difficult to make

more quantitative statements due to the large errors involved.

6.5 Conclusion

In this chapter we have reexamined predictions of heavy quark symmetry for
the radiative rare decays of B mesons into higher K resonances [58]. An earlier
calculation [47] suggested a substantial fraction ((17.3-37.1)%) of the inclusive
b — s7 branching ratio going into the K3(1430) channel, and only (3.5-12.2)%
going into the K*(892) channel. Even though we also used nonrelativistic

quark model, our calculation yields fractions of (16.8 +6.4)% and (6.2 +2.9)%
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for K*(892) and K3(1430) channels, respectively. Note that experimental
results favor the value of (19 & 5)% for the K*(892) channel. Besides a more
careful treatment of the uncertainty in the wave functions of the light degrees
of freedom, our calculation differs from [47] only in employing form factor
definitions [42] that are consistent with the covariant trace formalism, and are
given in Chapter 3. As a consequence of that, our results for all decay channels
significantly differ from [47]. The contribution of the eight K**7 channels to
the inclusive B — X, mass distribution was compared with experiment. We
find the general shape of the mass spectrum to be correct, but due to the large
errors involved one cannot reach more quantitative conclusions.

Despite the fact that one cannot argue that s quark is heavy, in the sense
that its mass is much larger than the QCD scale, it is still heavier than u and
d quarks. Therefore, it is not completely unjustified to perform the analysis
of the radiative rare B decays into K** resonances in the limit where K** are
considered as heavy-light mesons, even though one should not take numerical
results too seriously. Nevertheless, this limit simplifies the analysis consider-
ably and, if nothing else, it is useful in organizing phenomenology of radiative

rare B decays.



126

Chapter 7

Conclusions

There is no doubt that heavy quark symmetry (HQS) and corresponding ef-
fective theory (HQET) represent a large step forward in our understanding of
QCD. Nevertheless, there is only so much one can learn from symmetry argu-
ments. For example, in the heavy quark limit HQS reduces six unknown form
factors describing semileptonic B — D and B — D* decays to a single form
factor, the famous Isgur-Wise function. Even though some of the properties of
this function can be deduced, it still cannot be calculated from first principles.
Instead, one has to rely on some model of strong interactions. Therefore, the
discovery of HQS has not eliminated the need for reliable and self-consistent
hadronic models. This is in fact the principal motivation for this work.
There were two main areas which were investigated in this thesis. The first
one concerns the problem of extraction of the unknown form factors, describing
decays of heavy-light mesons, from a given model of strong interactions. It
is reasonable to assume that these form factors will be related to the overlap
of the wave functions of the light degrees of freedom (LDF) in the mesons
before and after the decay. However, in defining form factors one has to be

very careful, since definitions for different form factors may involve different



127

kinematical factors, which must be taken into account. By comparing the
matrix elements of heavy quark currents calculated from the HQET covariant
trace formalism (CTF), with the ones calculated in the ordinary wave function
approach, we managed to find form factor definitions consistent with CTF. In
order to extract form factors from a given bound state model (in the valence
quark approximation), we expressed the LDF overlaps in terms of their rest
frame wave functions and energies. Our results, especially the ones for the
inelastic form factors, considerably differ from the expressions that can be
found in the literature.

The second area investigated here was the question of self-consistency of
several hadronic models in the heavy quark limit. We used the linear Regge
structure of a given model, together with model calculations of the Bjorken and
Voloshin sum rules, in order to find parameters which give results consistent
with HQET sum rule expectations. We emphasize that the aim of our analysis
was not to determine whether a particular model is right or wrong in terms
of a particular equation, type of confinement, or specific potential it employs.
Instead, our goal was to show how one can construct a model which not only
yields a good description of the spin-averaged heavy-light spectrum, but is
also consistent with experimental data on the light hadron spectroscopy, and
self-consistent with respect to HQET sum rules. In this way, we were able not
only to use various hadronic models in order to get information which cannot
be obtained from HQET, but also to use HQET to extract information on a

specific bound state model.
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Putting all of those pieces together, we have used our form factor defini-
tions, together with several hadronic models constructed to be self-consistent
with respect to HQET sum rules, for the calculation of semileptonic B decays
into higher charmed resonances, within the HQET framework. Our results
obtained with six qualitatively different models are comparable for all decays
considered. However, we found significant disagreement with existing litera-
ture, especially in the magnitude of branching ratios for some decays, and in
the ratios of B decays into the members of the same heavy-light doublet. We
also compared our results with experiment, and it turned out that our models,
as well as none of the ones that can be found in the literature, cannot account
for more than 20% of all semileptonic B decays. It remains an open question
whether this difference between theory and experiment can be explained with
the non-resonant contributions to the inclusive semileptonic rate, which is sug-
gested by the recent experimental data. Otherwise, one possible explanation
would be inadequacy of hadronic models we used here (or the ones that can
be found in the literature).

As another application of our method of extracting form factors from a
given bound state model, we reexamined HQS predictions for the radiative rare
decays of B meson into higher K resonances. Even though one cannot argue
that s quark is heavy, in the sense that its mass is much larger than the QCD
scale, it is still heavier than v and d quarks. Therefore, it is not completely
unjustified to perform the analysis of the radiative rare B decays into K**
resonances in the limit where K** are considered as heavy-light mesons, even

though the numerical results should not be taken too seriously. Nevertheless,
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this limit simplifies the analysis considerably and, if nothing else, it is useful in
organizing phenomenology of radiative rare B decays. An earlier calculation
of B — K**7 decays within HQET framework suggested a substantial fraction
of the inclusive b — s branching ratio going into the K3;(1430) channel, and
much smaller fraction going into the K*(892) channel. Those results were
obtained by employing the form factor definitions which are not consistent
with CTF. As a consequence of that, our results significantly differ for all
decay channels.

There are many directions in which one may proceed further. For exam-
ple, in this thesis we have considered only the helicity averaged decay rates
for semileptonic B decays. However, the same Isgur-Wise form factors we
calculated here also appear in the calculation of partial rates into polarized
current components, and in the angular decay distributions. These angular
correlation measurements would provide additional information on the decay
dynamics, which would be useful in determining the validity of various the-
oretical models. Theoretical study of the non-resonant contributions to the
inclusive semileptonic B meson decay rate would probably shed some light on
the problem of the missing semileptonic B decays. Another obvious possibility
is to perform calculations for B, semileptonic decays, similar to the one we did
for semileptonic B decays. Finally, all results given in this work were obtained
in the heavy quark limit. Since the theory of power and radiative corrections
in HQET is to a large extent already developed, it would be worth the effort
studying symmetry breaking corrections (such as 1/mq effects), from the point

of view of hadronic models.
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Appendix A

Numerical Methods

In this Appendix we briefly describe numerical methods used to deal with dif-
ferent hadronic models. For a state with a given angular momentum, all models
we considered can be reduced to a set of radial equations involving the radial
wave function(s) [53,54,78]. For the sake of simplicity we shall discuss here
spinless models, which involve only one radial wave function R, ;, although the
same method can be generalized to a heavy-light Salpeter and Dirac equations
(which involve two radial wave functions) [53], and has also been successfully
used for variational solution of the full and the reduced Salpeter equations
with arbitrary quark masses [88,146].!

The radial equation in a spinless model has the form
HR,, = MR, , (A.1)

where H and M are the model Hamiltonian and the state mass, respectively.
The easiest way to solve (A.1) is to expand radial wave function in terms of

some complete set of basis functions {e;r, }, and truncate the expansion to the

!The full Salpeter equation with arbitrary quark masses involves as many as four radial
wave functions.
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first N basis states, i.e.,
N-1
RnL ~ Z C €1, - (AZ)
i=0

Multiplying (A.1) from the left by [5°r*dres; (8,7) (or by [¢° p*dpe}.(8,p),
depending on whether we are working in coordinate or momentum space), we

get the N x N matrix equation
Hop = My, (A.3)
where H = (H);; is the Hamiltonian matrix, and ¢ is an N dimensional vector,

Co

C1

CN-1

The matrix H and its eigenvalues depend on the variational parameter /3 char-
acterizing the basis functions. However, if the calculation is stable, dependence
of the eigenvalues on (8 should reduce as N increases. This is manifested by
the development of plateaus in 5 having the same eigenvalues. As an example,
in Figure A.1 we show our SSEQ calculations for the three lowest S-wave D**
resonances, which used 5, 15 and 25 basis states.?

A basis set that was shown to be very successful in calculations of this sort

is given by [145]

eir(B,1) = Nip 8% (28r) e P L2 (287) . (A.5)

2In order to ensure the desired accuracy, all results quoted in this thesis are obtained
using 50 basis states.



132

30
29 f\ |
28 fli
27§
261
25 i
24
22

21
20 Pioe
19t -
18f ———— N=25 -
17k e N=15 -
16 [ N=5 .

1.5 1 1 1 1 1 1 1 1 1
00 05 10 15 20 25 30 35 40 45 50

BlGeV]

M[GeV]

Figure A.1: Variational calculation for the three lowest S-wave D** resonances.
Results are obtained with SSEQ (constituent quark masses, m, 4 and m., as
well as the other parameters of the model, are given in (4.17)). We used N =5
(dotted lines), 15 (dashed lines), and 25 (full lines) basis states.

Here, Lz(a) (x) are the generalized Laguerre polynomials, and

.- as)

These basis states are normalized so that

[ rdres (8, m)esn(8.r) = 0y (A7)

The Fourier transform of (A.5) is known analytically,

p? — B2

NLAT. p B L2 1 pL+3.L+d)
eir.(8,p) = (—1) NiLﬁz(m) p B (p2 +52) ) (A.8)
where P{*?)(z) are Jacobi polynomials, and
1
- 2T'(%) il(i+ 20 + 2)! 2
"TTE+ L+ l m (A.9)
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For computational precision and efficiency, whenever possible the matrix

representation of operators has been calculated analytically. For p? = —%g—;r
we have
Nj (L +1)(2i + 2L +3) — L(2L + 3)(j — 4)
2 2 j
= —8;: +2 , (A1
Wy = 57 -5+ 23 e (A.10)
while the expression for p? = p? + L(L +1)/r% is
N2+ 2L+ 3
)i = B2 | =0y + 2 2E ] A.11
w)y =5 [ I N 2043 (A1)
Matrix element for r is given by
1 . .
<T>ij = % [(21 + 2L + 3)(5,',]' — j(_] + 2L + 2)(5,',]'_1
— Vi(i+ 2L +2)6; 41| (A.12)
the one for 1/r is
1 B N
SN = Al
<7'> J L + 1 NiL ( 3)

while for 1/r? we have

1 _ 2,62 NjL
(30 = (L+ 1) (2L + 1)(2L + 3) Ny,

[(QL+1)(j —i)+2j+2L+3] . (A.14)

For the above expressions we assumed 7 < j. Results for 7 > j can be obtained
by simple reflection due to the symmetry of operators. Another useful matrix

element is the one for %,

(L+2)Njp/Nir, , 1<}

= — X 1 1 :j : (A15)

(=LNiy/Njz) , i>3]
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This matrix element appears in models based on the Salpeter or Dirac equa-
tion.
In some models, such as SSEQ, for the constituent quark mass m the kinetic

energy term of the H matrix has the form

/0 p’dpe;; (p)\/p?* + me;(p) (A.16)

where we dropped the dependence of the basis states on 3. Matrix ele-
ment such as this one can be very efficiently calculated using Gauss-Jacobi
quadrature formula, after performing a change of integration variable from p
toz = (p* — 5°)/(p” + B°).

For the flux tube models (RFTM and SFTM) the additional complication
are the unknown matrix representations for the v, operators which appear
in the Hamiltonian. These are obtained from the quantized orbital angular
momentum equations such as (4.22). This involves solving non-linear tran-
scendental matrix equation using the matrix iteration method developed in

78].
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